Abstract:
A coating composition is disclosed. The coating composition includes a poly(methyl methacrylate) polymer or copolymer having a weight average molecular weight of at least 50,000 grams per mole; monomer comprising at least one of an alkylene diacrylate, alkylene dimethacrylate, cycloalkylene diacrylate, or cycloalkylenedimethacrylate, wherein the at least one of an alkylene diacrylate, alkylene dimethacrylate, cycloalkylene diacrylate, or cycloalkylenedimethacrylate provides at least 80 percent by weight of the monomer; and a stabilizer against ultraviolet light. An article including a coating on a surface of a substrate and a method of making the article are also disclosed. The coating on the surface of the substrate is obtained by curing the disclosed coating composition.
Abstract:
In certain embodiments, the present disclosure relates to low emissivity films and articles comprising them. Other embodiments are directed to methods of reducing emissivity in an article comprising the use of low emissivity films. In some embodiments, the low emissivity films comprise a metal layer and one or more zirconium nitride layers adjacent the metal layer. This type of assembly may serve various purposes, including being used as a sun control film. These constructions may be used, for example, on glazing units for reducing transmission of infrared radiation across the film in both directions.
Abstract:
The present disclosure relates generally to light management constructions comprising microstructured prismatic elements useful in the preparation of room-facing light redirecting films having reduced glare.
Abstract:
Article comprising a substrate having a first major surface, wherein the major surface has an emissivity not greater than 0.2 and an exposed hardcoat on the first major surface, the hardcoat comprising binder, wherein the hardcoat has a thickness less than 200 nanometers and has a scratch rating of not greater than 1 as determined by the Linear Abrasion Test in the Examples. Articles described herein are useful, for example, for sun control window films having insulative properties. Such films are applied on the interior or exterior surfaces of automotive windows or building fenestrations
Abstract:
Solar light redirecting glazing units include light redirecting and light diffusing constructions. The solar light redirecting glazing units may include a glazing substrate, a visible light diffusing layer, and a light redirecting layer oriented such that incoming solar light contacts the visible light diffusing layer before contacting the light redirecting layer. The solar light redirecting glazing units may include a glazing substrate, a patterned visible light diffusing layer, and a light redirecting layer. The solar light redirecting glazing units may include two glazing substrates separated by an intervening space with a solar light redirecting layer disposed on one glazing substrate, and a visible light diffusing layer disposed on the other glazing substrate.
Abstract:
A light redirecting solar control film includes a multilayer film that transmits visible light and reflects infrared light, and a light redirecting layer adjacent to the multilayer film forming a light redirecting solar control film. The light redirecting layer includes a major surface forming a plurality of prism structures.
Abstract:
A coating composition is disclosed. The coating composition includes a poly(methyl methacrylate) polymer or copolymer having a weight average molecular weight of at least 50,000 grams per mole; monomer comprising at least one of an alkylene diacrylate, alkylene dimethacrylate, cycloalkylene diacrylate, or cycloalkylenedimethacrylate, wherein the at least one of an alkylene diacrylate, alkylene dimethacrylate, cycloalkylene diacrylate, or cycloalkylenedimethacrylate provides at least 80 percent by weight of the monomer; and a stabilizer against ultraviolet light. An article including a coating on a surface of a substrate and a method of making the article are also disclosed. The coating on the surface of the substrate is obtained by curing the disclosed coating composition.
Abstract:
A composition includes a plurality of pigment particles including a metal oxide, a polymeric first dispersant, and a second dispersant including molecules having a lower molecular weight than the first dispersant. The composition may be used in a hardcoat.
Abstract:
In certain embodiments, the present disclosure relates to low emissivity films and articles comprising them. Other embodiments are directed to methods of reducing emissivity in an article comprising the use of low emissivity films. In some embodiments, the low emissivity films comprise a metal layer and one or more zirconium nitride layers adjacent the metal layer. This type of assembly may serve various purposes, including being used as a sun control film. These constructions may be used, for example, on glazing units for reducing transmission of infrared radiation across the film in both directions.
Abstract:
The present disclosure relates generally to light management constructions comprising microstructured prismatic elements useful in the preparation of sun-facing light redirecting films having reduced glare.