摘要:
A method for modifying the refractive index of an optical polymeric material. The method comprises continuously irradiating predetermined regions of an optical, polymeric material with femtosecond laser pulses to form a gradient index refractive structure within the material. An optical device includes an optical, polymeric lens material having an anterior surface and posterior surface and an optical axis intersecting the surfaces and at least one laser-modified, GRIN layer disposed between the anterior surface and the posterior surface and arranged along a first axis 45° to 90° to the optical axis, and further characterized by a variation in index of refraction across at least one of at least a portion of the adjacent segments and along each segment.
摘要:
The invention is directed to an optical device comprising refractive optical structures, wherein the refractive structures are characterized by a change in refractive index, exhibit little or no scattering loss, and exhibit no significant differences in the Raman spectrum with respect to the non-irradiated optical, polymeric material.
摘要:
The invention is directed to an optical device comprising refractive optical structures, wherein the refractive structures are characterized by a change in refractive index, exhibit little or no scattering loss, and exhibit no significant differences in the Raman spectrum with respect to the non-irradiated optical, polymeric material.
摘要:
A method for modifying the refractive index of an optical, polymeric material. The method comprises irradiating select regions of the optical, polymeric material with a focused, visible or near-IR laser having a pulse energy from 0.05 nJ to 1000 nJ. The irradiation results in the formation of refractive optical structures, which exhibit little or no scattering loss. The method can be used to modify the refractive index of an intraocular lens following the surgical implantation of the intraocular lens in a human eye. The invention is also directed to an optical device comprising refractive optical structures, which exhibit little or no scattering loss and are characterized by a positive change in refractive index.
摘要:
An optical fiber is tapered, for example, by heating it with a CO2 laser. The tapering process is controlled such that the taper transition regions have taper angles selected to minimize loss. The taper waist has a diameter selected to introduce desired dispersion properties and desired nonlinearity. The optical fiber can be used as a dispersion compensator in a fiber laser or other fiber optic system. The nonlinearity in the tapered optical fiber allows the generation of ultrashort light pulses.
摘要:
A broad band optical amplifier includes at least one free space wavelength demultiplexer/multiplexer and optical gain means. The free space demultiplexer/multiplexer receives a multiplexed signal and spatially separates it into a plurality of spectral components each having a unique peak wavelength. The optical gain means has a plurality of wavelength-selective gain regions that are capable of imparting gain to (i.e., amplifying) an optical signal over a particular narrow range of wavelengths. The operational range (i.e., the particular narrow range of wavelengths) of each gain region is unique. The spatially-separated spectral components are individually delivered to specific gain regions by the demultiplexer/multiplexer as a function of the peak wavelength of the spectral component and the operative range of the gain region.
摘要:
The passive optical network system and method for providing a predetermined wavelength of data to remote users according to the present invention includes a multiple wavelength transmitter for transmitting a multiwavelength signal. The multiwavelength signal is provided by an access provider and has a plurality of signal components each of predetermined wavelength. A power-splitting passive optical network receives and power-splits the multiwavelength signal into a plurality of distributed multiwavelength signals each associated with a respective remote user. A filter selectively filters out, for each remote user, ones of the signal components of the associated distributed multiwavelength signal to provide the remote user with a selected one signal component of predetermined wavelength.
摘要:
An apparatus and method provides optical multiple wavelength signals using a single optical broadband source to generate many independent optical wavelength channels. An optical transmitter includes a pulse chirping device which separates the frequency components of periodic optical pulses in the time domain forming separate wavelength channels which are separately modulated by a high-speed broadband optical modulator. A receiver includes a passive splitter to separate the individual wavelength channels. The chirped-pulse transmitter can then be conveniently adjusted to provide optimum overlap of wavelength channels with the modulating channel spectra.
摘要:
Low optical loss and simplified fabrication are achieved by a nonlinear reflector which incorporates one or more semiconductor quantum wells within a standard semiconductor quarter wave stack reflector. The nonlinear reflector provides an intensity dependent response which permits it to be used for saturable absorption directly in a main oscillating cavity of a laser. Saturation intensity of the nonlinear reflector and thereby related laser modelocking properties can be controlled by disposing the quantum well at a particular position in the reflector structure.
摘要:
A method for modifying a refractive property of ocular tissue in an eye by creating at least one optically-modified gradient index (GRIN) layer in the corneal stroma and/or the crystalline by continuously scanning a continuous stream of laser pulses having a focal volume from a laser having a known average power along a continuous line having a smoothly changing refractive index within the tissue, and varying either or both of the scan speed and the laser average power during the scan. The method may further involve determining a desired vision correction adjustment, and determining a position, number, and design parameters of gradient index (GRIN) layers to be created within the ocular tissue to provide the desired vision correction.