Abstract:
A semiconductor device having a metal gate includes a substrate having a plurality of shallow trench isolations (STIs) formed therein, at least a metal gate positioned on the substrate, and at least a pair of auxiliary dummy structures respectively positioned at two sides of the metal gate and on the substrate.
Abstract:
A manufacturing method for a metal gate includes providing a substrate having a dielectric layer and a polysilicon layer formed thereon, the polysilicon layer, forming a protecting layer on the polysilicon layer, forming a patterned hard mask on the protecting layer, performing a first etching process to etch the protecting layer and the polysilicon layer to form a dummy gate having a first height on the substrate, forming a multilayered dielectric structure covering the patterned hard mask and the dummy gate, removing the dummy gate to form a gate trench on the substrate, and forming a metal gate having a second height in the gate trench. The second height of the metal gate is substantially equal to the first height of the dummy gate.
Abstract:
A poly opening polish process includes the following steps. A semi-finished semiconductor component is provided. The semi-finished semiconductor component includes a substrate, a gate disposed on the substrate, and a dielectric layer disposed on the substrate and covering the gate. A first polishing process is applied onto the dielectric layer. A second polishing process is applied to the gate. The second polishing process utilizes a wetting solution including a water soluble polymer surfactant, an alkaline compound and water. The poly opening polish process can effectively remove an oxide residue formed in the chemical mechanical polish, thereby improving the performance of the integrated circuit and reducing the production cost of the integrated circuit.
Abstract:
A chemical mechanical polishing (CMP) process includes steps of providing a substrate, performing a first polishing step to the substrate with an acidic slurry, and performing a second polishing step to the substrate with a basic slurry after the first polishing step.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a transistor region and a resistor region; forming a shallow trench isolation (STI) on the substrate of the resistor region; forming a tank in the STI of the resistor region; and forming a resistor in the tank and on the surface of the STI adjacent to two sides of the tank.
Abstract:
A poly opening polish process includes the following steps. A semi-finished semiconductor component is provided. The semi-finished semiconductor component includes a substrate, a gate disposed on the substrate, and a dielectric layer disposed on the substrate and covering the gate. A first polishing process is applied onto the dielectric layer. A second polishing process is applied to the gate. The second polishing process utilizes a wetting solution including a water soluble polymer surfactant, an alkaline compound and water. The poly opening polish process can effectively remove an oxide residue formed in the chemical mechanical polish, thereby improving the performance of the integrated circuit and reducing the production cost of the integrated circuit.
Abstract:
A manufacturing method for a metal gate includes providing a substrate having a dielectric layer and a polysilicon layer formed thereon, the polysilicon layer, forming a protecting layer on the polysilicon layer, forming a patterned hard mask on the protecting layer, performing a first etching process to etch the protecting layer and the polysilicon layer to form a dummy gate having a first height on the substrate, forming a multilayered dielectric structure covering the patterned hard mask and the dummy gate, removing the dummy gate to form a gate trench on the substrate, and forming a metal gate having a second height in the gate trench. The second height of the metal gate is substantially equal to the first height of the dummy gate.
Abstract:
A semiconductor process includes the following steps. A first gate structure and a second gate structure are formed on a substrate, wherein the top of the first gate structure includes a cap layer, so that the vertical height of the first gate structure is higher than the vertical height of the second gate structure. An interdielectric layer is formed on the substrate. A first chemical mechanical polishing process is performed to expose the top surface of the cap layer. A second chemical mechanical polishing process is performed to expose the top surface of the second gate structure or an etching process is performed to remove the interdielectric layer located on the second gate structure. A second chemical mechanical polishing process is then performed to remove the cap layer.