Abstract:
A method for fabricating a semiconductor device includes forming first and second gate structures overlying the semiconductor substrate, and depositing a layer of a silicide-resistant material over the first and second gate structures and over the semiconductor substrate. The method further includes forming sidewall spacers from the layer of silicide-resistant material adjacent the first gate structure and removing the silicide-resistant material adjacent the sidewall spacers to expose the silicon substrate in a source and drain region. Still further, the method includes implanting conductivity determining impurities in the source and drain region, depositing a silicide forming metal, and annealing the semiconductor device to form a silicide in the source and drain region. The silicide-resistant material is not removed from over the second gate structure so as to prevent silicide formation at the second gate structure.
Abstract:
Disclosed herein are various methods of forming isolation structures, such as trench isolation structures, for semiconductor devices using a spin-on glass material or a flowable oxide material. In one example, the method includes forming a trench in a semiconducting substrate, forming a lower isolation structure comprised of an insulating material in at least the trench, wherein the lower isolation structure has an upper surface that is below an upper surface of the substrate, and forming an upper isolation structure above the lower isolation structure, wherein a portion of the upper isolation structure is positioned within the trench.
Abstract:
Methods of forming transistor devices having an increased gate width dimension are disclosed. In one example, the method includes forming an isolation structure in a semiconducting substrate, wherein the isolation structure defines an active region in the substrate, performing an ion implantation process on the isolation structure to create a damaged region in the isolation structure and, after performing the implantation process, performing an etching process to remove at least a portion of the damaged region to define a recess in the isolation structure, wherein a portion of the recess extends below an upper surface of the substrate and exposes a sidewall of the active region. The method further includes forming a gate insulation layer above the active region, wherein a portion of the insulation layer extends into the recess, and forming a gate electrode above the insulation layer, wherein a portion of the gate electrode extends into the recess.
Abstract:
Devices are formed with boot shaped source/drain regions formed by isotropic etching followed by anisotropic etching. Embodiments include forming a gate on a substrate, forming a first spacer on each side of the gate, forming a source/drain region in the substrate on each side of the gate, wherein each source/drain region extends under a first spacer, but is separated therefrom by a portion of the substrate, and has a substantially horizontal bottom surface. Embodiments also include forming each source/drain region by forming a cavity to a first depth adjacent the first spacer and forming a second cavity to a second depth below the first cavity and extending laterally underneath the first spacers.
Abstract:
In MOS transistor elements, a strain-inducing semiconductor alloy may be embedded in the active region with a reduced offset from the channel region by applying a spacer structure of reduced width. In order to reduce the probability of creating semiconductor residues at the top area of the gate electrode structure, a certain degree of corner rounding of the semiconductor material may be introduced, which may be accomplished by ion implantation prior to epitaxially growing the strain-inducing semiconductor material. This concept may be advantageously combined with the provision of sophisticated high-k metal gate electrodes that are provided in an early manufacturing stage.
Abstract:
In sophisticated semiconductor devices, transistors may be formed on the basis of a high-k metal gate electrode structure provided in an early manufacturing phase, wherein an efficient strain-inducing mechanism may be implemented by using an embedded strain-inducing semiconductor alloy. In order to reduce the number of lattice defects and provide enhanced etch resistivity in a critical zone, i.e., in a zone in which a threshold voltage adjusting semiconductor alloy and the strain-inducing semiconductor material are positioned in close proximity, an efficient buffer material or seed material, such as a silicon material, is incorporated, which may be accomplished during the selective epitaxial growth process.
Abstract:
Embodiments of methods for fabricating the semiconductor devices are provided. The method includes forming a layer of spacer material over a semiconductor region that includes a first gate electrode structure and a second gate electrode structure. Carbon is introduced into a portion of the layer covering the semiconductor region about the first gate electrode structure or the second gate electrode structure. The layer is etched to form a first sidewall spacer about the first gate electrode structure and a second sidewall spacer about the second gate electrode structure.
Abstract:
When forming sophisticated high-k metal gate electrode structures in an early manufacturing stage on the basis of a silicon/germanium semiconductor alloy for adjusting appropriate electronic conditions in the channel region, the efficiency of a strain-inducing embedded semiconductor alloy, such as a silicon/germanium alloy, may be enhanced by initiating a crystal growth in the silicon material of the gate electrode structure after the gate patterning process. In this manner, the negative strain of the threshold voltage adjusting silicon/germanium alloy may be reduced or compensated for.
Abstract:
By selectively applying a stress memorization technique to N-channel transistors, a significant improvement of transistor performance may be achieved. High selectivity in applying the stress memorization approach may be accomplished by substantially maintaining the crystalline state of the P-channel transistors while annealing the N-channel transistors in the presence of an appropriate material layer which may not to be patterned prior to the anneal process, thereby avoiding additional lithography and masking steps.
Abstract:
By recessing drain and source regions, a highly stressed layer, such as a contact etch stop layer, may be formed in the recess in order to enhance the strain generation in the adjacent channel region of a field effect transistor. Moreover, a strained semiconductor material may be positioned in close proximity to the channel region by reducing or avoiding undue relaxation effects of metal silicides, thereby also providing enhanced efficiency for the strain generation. In some aspects, both effects may be combined to obtain an even more efficient strain-inducing mechanism.