Abstract:
A device includes a memory device and an NPN or PNP diode coupled to a word-line of the memory device. The NPN or PNP diode reduces device damage and performance impairment that may result from device charging by drawing charges away from the memory device.
Abstract:
A device according to one embodiment includes an electronic component such as an MR sensor, a pair of leads operatively coupled to the electronic component, and shorting material between the leads, the shorting material having been applied by a laser deposition process, the shorting material having been severed. A magnetic storage system according to another embodiment includes magnetic media; and at least one head for reading from and writing to the magnetic media, each head having: a sensor; and a writer coupled to the sensor. The system also includes a pair of pads or leads operatively coupled to the head; shorting material between the leads, the shorting material having been applied by a laser deposition process, the shorting material having been severed; a slider for supporting the head; and a control unit coupled to the head for controlling operation of the head.
Abstract:
A method of forming an embedded read element is used in the fabrication process of a magnetic head assembly including write and read heads. In this method, three photolithographic patterning steps are applied for defining the designed height of the embedded read element, defining its designed width, and connecting it with conducting layers, respectively. An in-line lapping guide is also formed with a spacing in front of the embedded read element. In this method, two mechanical lapping steps are applied, one monitored by measuring the resistance of a parallel circuit of the embedded read element and the in-line lapping guide, and the other monitored by measuring the GMR response of the embedded read element.
Abstract:
A memory cell system is provided including forming a first insulator layer over a semiconductor substrate, forming a charge trap layer over the first insulator layer, forming a second insulator layer over the charge trap layer, forming a top blocking intermediate layer over the second insulator layer, and forming a contact layer over the top blocking intermediate layer.
Abstract:
A flash memory system configured in accordance with an example embodiment of the invention employs a virtual ground array architecture. During programming operations, target memory cells are biased with a positive source bias voltage to reduce or eliminate leakage current that might otherwise conduct through the target memory cells. A positive source bias voltage may also be applied to target memory cells during verification operations (program verify, soft program verify, erase verify) to reduce or eliminate leakage current that might otherwise introduce errors in the verification operations.
Abstract:
A memory cell system is provided including forming a first insulator layer over a semiconductor substrate, forming a charge trap layer over the first insulator layer, and slot plane antenna plasma oxidizing the charge trap layer for forming a second insulator layer.
Abstract:
A device according to one embodiment includes an electronic component such as an MR sensor, a pair of leads operatively coupled to the electronic component, and shorting material between the leads, the shorting material having been applied by a laser deposition process, the shorting material having been severed. A magnetic storage system according to another embodiment includes magnetic media; and at least one head for reading from and writing to the magnetic media, each head having: a sensor; and a writer coupled to the sensor. The system also includes a pair of pads or leads operatively coupled to the head; shorting material between the leads, the shorting material having been applied by a laser deposition process, the shorting material having been severed; a slider for supporting the head; and a control unit coupled to the head for controlling operation of the head.
Abstract:
A memory cell system is provided including forming a first insulator layer over a semiconductor substrate, forming a charge trap layer over the first insulator layer, forming a second insulator layer over the charge trap layer, forming a top blocking intermediate layer over the second insulator layer, and forming a contact layer over the top blocking intermediate layer.
Abstract:
A memory cell system is provided forming a first insulator layer over a semiconductor substrate, forming a charge trap layer over the first insulator layer, forming an intermediate layer over the charge trap layer, and forming a second insulator layer with the intermediate layer.
Abstract:
A magnetic sensor is provided, having two bias layers separated by a decoupling layer to eliminate exchange coupling between the bias layers. The two bias layers may have differing coercivities, such that the biases provided by the bias layers to the free layer are independently adjustable. The grain structures of the two bias layers may be substantially decorrelated by the decoupling layer.