摘要:
A nitrogen oxide absorbing material (38) which absorbs nitrogen oxide when the reduction component concentration of exhaust gas in the exhaust passage (31) of an engine (1) is lower than a predetermined concentration, and discharges nitrogen oxide when the reduction component concentration of exhaust gas in the exhaust passage (31) of the engine (1) is higher than the predetermined concentration, and a catalyst (38) which promotes reduction of the discharged nitrogen oxides by a reduction component are provided. A controller (40) first reduces the reduction component concentration of the exhaust gas over a first predetermined time period by, for example, advancing the fuel injection timing. The controller (40) then increases the reduction component concentration of the exhaust gas over a second predetermined time period by, for example, retarding the fuel injection timing.
摘要:
A catalyst for the purification of exhaust gas comprises a first coat layer of a palladium-carried activated alumina containing Ce, Zr and La formed on a honeycomb carrier, a second coat layer of an activated alumina containing Ce, Zr and La formed on the first coat layer, and a third coat layer of copper ion-exchanged zeolite powder formed on the second coat layer and efficiently purifies NOx, HC and CO in the exhaust gas under conditions from theoretical air-fuel ratio to excessive oxygen atmosphere.
摘要:
A catalyst for removing nitrogen oxides whose activity deterioration due to volatile poisons contained in exhaust gases is prevented and which has a superior endurance, and a process for producing the catalyst are provided, which catalyst comprises a titania having a surface area of 20 m.sup.2 /g or less and a zeolite having 0.01 to 20% by weight of copper supported thereon; having an average pore diameter of 10 .ANG. or less; and having a silica/alumina molar ratio of 10 or more, and which process comprises mixing powder of the zeolite with the titania or its precursor, followed by molding the mixture into a predetermined shape, followed by calcining the resulting material at 800.degree. C. or higher.
摘要:
An exhaust gas purifying system includes: a NOx trapping agent (2) which adsorbs nitrogen oxide when an excess air ratio of exhaust gas is more than 1, and releases nitrogen oxide when the excess air ratio is 1 or less; a NOx purifying catalyst (13) which reduces nitrogen oxide to nitrogen; and an oxygen concentration controller which controls oxygen concentration in the exhaust gas. When the excess air ratio of the exhaust gas is more than 1, nitrogen oxide is adsorbed to the NOx trapping agent (2). When the excess air ratio of the exhaust gas is 1 or less, the oxygen concentration controller controls the oxygen concentration of the exhaust gas at an inlet of the NOx purifying catalyst between 0.8 and 1.5% by volume, so that the NOx purifying catalyst reduces nitrogen oxide released from the NOx trapping agent.
摘要:
A particulate matter purifying material is used for a filter catalyst for purifying particulate matter that is disposed in an exhaust gas flow path of an internal combustion engine, traps the particulate matter in exhaust gas generated in the internal combustion engine, and burns the particulate matter to be deposited, so as to be regenerated. The particulate matter purifying material includes an oxide containing cerium (Ce) having an oxygen storage-release capacity, and at least one metal (Me) selected from the group consisting of Zr, Y, La, Pr, Sr, Nb and Nd, wherein a content ratio (Ce:Me) of cerium to the metal is 6:4 to 9:1 in terms of an atomic ratio, and a degree of crystallinity (CR) represented by the following formula (1) is within a range of 25 to 60%: Degree of crystallinity (CR)=I/I0×100(%) (1) wherein I represents an X-ray diffraction peak intensity with regard to a (111) plane of a CeO2 phase in the particulate matter purifying material, and I0 represents the X-ray diffraction peak intensity with regard to the (111) plane of the CeO2 phase after the particulate matter purifying material is baked in air at 1000° C.
摘要:
A sensor apparatus includes: a display cover including an operation area that is pressed by an operator and a circumferential area located on the circumference of the operation area; a frame including an opening covered by the operation area and a fixing portion that fixes the circumferential area; a touch panel that is supported by the display cover to be positioned at the opening and detects a position at which the operator comes into contact with the operation area; and a pressure-sensitive sensor that is provided between the display cover and the frame, includes a first electrode and a second electrode opposed to the first electrode, and detects a pressing force with respect to the operation area based on a change of a capacitance between the first electrode and the second electrode that corresponds to a deflection amount of the display cover.
摘要:
An exhaust gas purifying catalyst (1) includes: a three-dimensional structural substrate (10) having a plurality of cells (11) partitioned by cell walls (12) having pores (13); and catalyst layers (20) formed in the three-dimensional structural substrate (10). The catalyst layers (20) have pore-cover portions (22) formed on surfaces (13a) of the pores (13) of the cell walls (12). In addition, the catalyst layers (20) of the pore-cover portions (22) have activated pores (22a) with a pore diameter of 0.1 micrometers to 10 micrometers. In the exhaust gas purifying catalyst (1), the obstruction of the vent holes (pores (13)) in the catalyst layers (20) can be controlled, and the pressure loss can be reduced.
摘要:
A power supply apparatus and method are provided. A conversion component outputs a first current having a predetermined phase region, an output component outputs a load voltage, a sense component senses a second current value, and a switch element allows current to flow in a first state and impedes current in a second state. The switch element changes between states based on a drive signal forcing the switch into the second state when the first current is in the predetermined phase region and the second current value exceeds a threshold indicating an overcurrent condition. A region determination circuit determines whether the first current is in the predetermined phase region and produces a phase region signal. An overcurrent detection circuit senses the second current value, determines whether it exceeds an overcurrent condition threshold, and produces an overcurrent signal. A protection circuit causes the drive circuit to switch the drive signal.
摘要:
A sensor apparatus includes: a display cover including an operation area that is pressed by an operator and a circumferential area located on the circumference of the operation area; a frame including an opening covered by the operation area and a fixing portion that fixes the circumferential area; a touch panel that is supported by the display cover to be positioned at the opening and detects a position at which the operator comes into contact with the operation area; and a pressure-sensitive sensor that is provided between the display cover and the frame, includes a first electrode and a second electrode opposed to the first electrode, and detects a pressing force with respect to the operation area based on a change of a capacitance between the first electrode and the second electrode that corresponds to a deflection amount of the display cover.
摘要:
An exhaust gas purifying catalyst (1) includes: a three-dimensional structural substrate (10) having a plurality of cells (11) partitioned by cell walls (12) having pores (13); and catalyst layers (20) formed in the three-dimensional structural substrate (10). The catalyst layers (20) have pore-cover portions (22) formed on surfaces (13a) of the pores (13) of the cell walls (12). In addition, the catalyst layers (20) of the pore-cover portions (22) have activated pores (22a) with a pore diameter of 0.1 micrometers to 10 micrometers. In the exhaust gas purifying catalyst (1), the obstruction of the vent holes (pores (13)) in the catalyst layers (20) can be controlled, and the pressure loss can be reduced.