Abstract:
The disclosure includes preferred semiconductor transistor devices utilizing thin film transistors, as well as preferred methods of forming such devices. Specifically, a bottom thin film transistor gate is formed having a top surface. An insulating filler is provided adjacent the thin film transistor gate to an elevation at least as high as the thin film transistor gate top surface, and subsequently levelled to provide generally planar insulating surfaces adjacent the thin film transistor gate. The planar insulating surfaces are substantially coplanar with the thin film transistor gate top surface. A planar semiconductor thin film is then formed over the thin film transistor gate and over the adjacent planar insulating surfaces. The thin film is doped to form source and drain regions of a thin film transistor which is bottom gated by the thin film transistor gate.
Abstract:
A method of programming an electrical variable resistance memory device. When applied to variable resistance memory devices that incorporate a phase-change material as the active material, the method utilizes a plurality of crystalline programming states. The crystalline programming states are distinguishable on the basis of resistance, where the resistance values of the different states are stable with time and exhibit little or no drift. As a result, the programming scheme is particularly suited to multilevel memory applications. The crystalline programming states may be achieved by stabilizing crystalline phases that adopt different crystallographic structures or by stabilizing crystalline phases that include mixtures of two or more distinct crystallographic structures that vary in the relative proportions of the different crystallographic structures. The programming scheme incorporates at least two crystalline programming states and further includes at least a third programming state that may be a crystalline, amorphous or mixed crystalline-amorphous state.
Abstract:
A cache memory system and method includes a DRAM having a plurality of banks, each of which may be refreshed under control of a refresh controller. In addition to the usual components of a DRAM, the cache memory system also includes 2 SRAMs each having a capacity that is equal to the capacity of each bank of the DRAM. In operation, data read from a bank of the DRAM are stored in one of the SRAMs so that repeated hits to that bank are cached by reading from the SRAM. In the event of a write to a bank that is being refreshed, the write data are stored in one of the SRAMs. After the refresh of the bank has been completed, the data stored in the SRAM are transferred to the DRAM bank. A subsequent read or write to a second DRAM bank undergoing refresh and occurring during the transfer of data from an SRAM to the DRAM is stored in the second bank. If, however, the second bank is being refreshed, the data are stored in the other SRAM. By the time data have been stored in the SRAM, the SRAM previously used to store write data has transferred the data to the first DRAM bank and in thus available to store a subsequent write. Therefore, an SRAM bank is always available to store write data in the event the DRAM bank to which the data are directed is being refreshed.
Abstract:
A cache memory system and method includes a DRAM having a plurality of banks, and it also includes 2 SRAMs each having a capacity that is equal to the capacity of each bank of the DRAM. In operation, data read from a bank of the DRAM are stored in one of the SRAMs so that repeated hits to that bank are cached by reading from the SRAM. In the event of a write to a bank that is being refreshed, the write data are stored in one of the SRAMs. After the refresh of the bank has been completed, the data stored in the SRAM are transferred to the DRAM bank. A subsequent read or write to a second DRAM bank undergoing refresh and occurring during the transfer of data from an SRAM to the DRAM is stored in either the second bank or the other SRAM.
Abstract:
A double blanket ion implant method for forming diffulsion regions in memory array devices, such as a MOSFET access device is disclosed. The method provides a semiconductor substrate with a gate structure formed on its surface Next, a first pair of diffulsion regions are formed in a region adjacent to the channel region by a first blanket ion implantation process. The first blanket ion implantation process has a first energy level and dose. The device is subjected to oxidizing conditions, which form oxidized sidewalls on the gate structure. A second blanket ion implantation process is conducted at the same location as the first ion implantation process adding additional dopant to the diffusion regions. The second blanket ion implantation process has a second energy level and dose. The resultant diffusion regions provide the device with improved static refresh performance over prior art devices. In addition, the first and second energy levels and doses are substantially lower than an energy level and dose used in a prior art single implantation process.
Abstract:
An electrical interconnection method includes: a) providing two conductive layers separated by an insulating material on a semiconductor wafer; b) etching the conductive layers and insulating material to define and outwardly expose a sidewall of each conductive layer; c) depositing an electrically conductive material over the etched conductive layers and their respective sidewalls; and d) anisotropically etching the conductive material to define an electrically conductive sidewall link electrically interconnecting the two conductive layers. Such is utilizable to make thin film transistors and other circuitry.
Abstract:
In an aspect, an apparatus is provided that sets and reprograms the state of programmable devices. In an aspect, a method is provided such that an opening is formed through a dielectric exposing a contact, the contact formed on a substrate. An electrode is conformally deposited on a wall of the dielectric, utilizing atomic layer deposition (ALD). A programmable material is formed on the electrode and a conductor is formed to the programmable material. In an aspect, a barrier is conformally deposited utilizing ALD, between the electrode and the programmable material.
Abstract:
Phase change memories may exhibit improved properties and lower cost in some cases by forming the phase change material layers in a planar configuration. A heater may be provided below the phase change material layers to appropriately heat the material to induce the phase changes. The heater may be coupled to an appropriate conductor.
Abstract:
A damascene approach may be utilized to form an electrode to a lower conductive line in a phase change memory. The phase change memory may be formed of a plurality of isolated memory cells, each including a phase change memory threshold switch and a phase change memory storage element.
Abstract:
A process for forming vertical contacts in the manufacture of integrated circuits and devices. The process eliminates the need for precise mask alignment and allows the etch of the contact hole to be controlled independent of the etch of the interconnect trough. The process including forming an insulating layer on the surface of a substrate; forming an etch stop layer on the surface of the insulating layer; forming an opening in the etch stop layer; etching to a first depth through the opening in the etch stop layer and into the insulating layer to form an interconnect trough; forming a photoresist mask on the surface of the etch stop layer and in the trough; and continuing to etch through the insulating layer until reaching the surface of the substrate to form a contact hole. The process may be repeated during the formation of multilevel metal integrated circuits.