Abstract:
Disclosed is a graphene laminate including a first graphene layer, containing an electron-donating functional group, and a second graphene layer, disposed on the first graphene layer and configured to include graphene, wherein the second graphene layer is n-doped with the first graphene layer. Thereby, graphene is doped with amino-group-modified graphene, thus preventing the transparency of graphene from decreasing, and the extent of doping of graphene can be adjusted, and the doping effect can last a long time even without any protective layer.
Abstract:
Disclosed is a method of manufacturing multilayer graphene, including (a) contacting of a metal substrate with a nonmetal element, (b) reduction through heat treatment, and (c) chemical vapor deposition of a graphene precursor on the metal substrate containing the nonmetal element dissolved therein, thereby manufacturing multilayer graphene that is doped with the nonmetal element on the metal substrate. In the multilayer graphene thus manufactured, the number of graphene layers and the work function are simultaneously adjusted by controlling the concentration of doped nonmetal element in a thickness direction of graphene through interactions related to the reduction of the nonmetal element dissolved in a copper catalyst and the growth of graphene, and moreover, the stacking structure of graphene is maintained and the optoelectronic properties of multilayer graphene can be controlled by simultaneously regulating graphene growth and doping during the synthesis procedure without additional processing.
Abstract:
Disclosed is a thin-film transistor-based pressure sensor including a gate electrode; a gate dielectric layer provided on the gate electrode; a semiconductor layer provided on the gate dielectric layer; and a source electrode and a drain electrode provided on the semiconductor layer, wherein each of the source and drain electrodes has an elastic body that includes: an elastic part having a protrusion; and a conductive part provided on a surface of the elastic part and having a conductive material. According to the pressure sensor and a method of manufacturing the same of the present invention, the elastic body coated with the conductive material is patterned to serve as the source electrode and the drain electrode of the pressure sensor whereby it is possible to drive an active matrix, drive the pressure sensor with low power, and manufacture the pressure sensor through a simple process.
Abstract:
Provided is a flexible substrate. The flexible substrate includes a first film having a first Young's modulus, a second film on the first film and having a second Young's modulus, and a third film between the first film and the second film and having a third Young's modulus. The third Young's modulus is less than each of the first Young's modulus and the second Young's modulus.
Abstract:
Disclosed is a 3D static RAM core cell having a vertically stacked structure, including six thin-film transistors each having a gate electrode, a source electrode and a drain electrode, the static RAM core cell including two switching thin-film transistors, each connected to a bit line and a word line to select recording and reading of data, and four data-storage thin-film transistors connected to a power supply voltage (Vdd) or a ground voltage (Vss) to record and read data, the static RAM core cell including a first transistor layer including two thin-film transistors selected from among the six thin-film transistors, a second transistor layer disposed on the first transistor layer and including two thin-film transistors selected from among the remaining four thin-film transistors, and a third transistor layer disposed on the second transistor layer and including the remaining two thin-film transistors, at least one electrode of the first transistor layer and at least one electrode of the second transistor layer being electrically connected to each other, and at least one electrode of the second transistor layer and at least one electrode of the third transistor layer being electrically connected to each other. Thereby, the static RAM core cell is configured such that organic transistors of the same type are arranged in the same plane and are vertically stacked, thus omitting a complicated patterning process for forming organic transistors of different types upon fabrication of a memory element, and also reducing the area occupied by the memory element to thereby increase the degree of integration of semiconductor circuits.
Abstract:
Disclosed is a method of producing graphene, which includes bringing a metal catalyst into contact with hydrogen gas (Step a), bringing the metal catalyst in Step a into contact with at least one selected from among a hydrocarbon gas, nitrogen gas, and an inert gas (Step b), and forming graphene on the metal catalyst by bringing the metal catalyst in Step b into contact with hydrogen gas and a hydrocarbon gas (Step c), whereby the number of layers of graphene can be variously controlled as needed, regardless of the initial surface roughness of a metal catalyst layer, and also, the time required to form graphene can be shortened, thus reducing processing costs.
Abstract:
Disclosed is a flexible electronic device having an adhesive function, including an adhesive tape that includes a flexible film and an adhesive layer formed on one side of the flexible film, and an electronic device formed on a remaining side of the flexible film of the adhesive tape. Accordingly, the flexible electronic device of the present invention is transferred on a surface of various flexible materials or materials having a curved surface so as to freely adhere and minimize breakage of the electronic device and maintain performance over a long period of time, even if the substrate is modified or repeatedly bent.
Abstract:
Disclosed herein is a laminate comprising: a substrate; an organic surface modifying layer disposed on the substrate; and a porous organic semiconductor layer disposed on the surface modifying layer. Onto the substrate, introduction of the organic surface modifying layer having a low surface energy, and optionally the organic intermediate layer having a low glass transition temperature controls the self assembly of the organic semiconductor layer, allowing the porous organic semiconductor layer to have high crystallinity and large crystal grains. Also, provided is a highly efficient chemical sensor comprising the laminate.
Abstract:
Proposed is a vibration sensor including: a substrate; a first electrode positioned on the substrate; a support positioned on the first electrode and including a cylindrical hollow hole; and a diaphragm including a thin film positioned on the support and a second electrode positioned on the thin film. According to the present disclosure, it is possible to manufacture a skin-attachable vibration sensor that is attached to a user's neck to detect vibration acceleration in user's neck skin, thus exhibiting a uniform and high sensitivity to a user's voice over the frequency range of the human voice. In addition, the sensor sensitively detects a user's voice through neck skin vibrations rather than through air, thus being free from the influence of external noise or wind, and can recognize the user's voice even in a situation where a user's mouth is covered.
Abstract:
Disclosed is a thermoelectric device, including a flexible substrate having a zigzag configuration in which a vertical cross-section in a longitudinal direction of one surface thereof includes peaks and valleys and a thermoelectric material line positioned on the flexible substrate and configured to include a p-type thermoelectric material and any one of an n-type thermoelectric material and an electrode material, which are alternately continuously disposed, wherein any one of the n-type thermoelectric material and the electrode material is in contact with the p-type thermoelectric material at the peaks and the valleys. The thermoelectric device, having a zigzag configuration, is highly flexible and lightweight, and a thermoelectric material in film form can be utilized to realize a vertical temperature difference, and thus the thickness of the device can be freely adjusted regardless of the film thickness, thereby easily maintaining a large temperature difference even without a heat sink.