Abstract:
A fiber grating demodulation system for enhancing spectral resolution by finely adjusting a light splitting grating, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, and a linear array detector. The laser pump source, the wavelength division multiplexer, the fiber Bragg grating are connected in sequence, the wavelength division multiplexer is connected to the diaphragm. Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating, a reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror, the light splitting grating, and the imaging focus mirror in sequence, and is finally converged to the linear array detector.
Abstract:
The invention relates to a spectrometer arrangement comprising successively in the light propagation direction: —a converging optical unit (3), designed for focusing and orienting the incident light onto an entrance slit (4), and —an imaging system disposed downstream of the entrance slit (4) and having at least one dispersive element, designed for imaging a dispersion spectrum of the incident light beam (2) onto a spatially resolving detection device. According to the invention, in a spectrometer arrangement of this type —the entrance slit (4) is embodied in a reflective fashion, and —at least the converging optical unit (3), the entrance slit (4) and an imaging grating (5, 13) are combined in a module (1), wherein they are integrated as components in a monolithic main body (6), or are embodied as optically active forms or structures on a monolithic main body (6).
Abstract:
The present application discloses an optical sensing module, an optical mechanism of a spectrometer, and a spectrometer. An optical sensing module according to one embodiment comprises an optical sensing component and an optical fiber. The optical sensing component includes at least a row of optical sensing units. The optical fiber is made of a transparent material and has a cylindrical curved surface. A side of the cylindrical curved surface faces the optical sensing units to converge at least a portion of an incident light received by the optical sensing units. With techniques of the present application, the amount of light collected at the optical sensing component can be increased for it to be suitable for applications such as miniaturized apparatuses and systems, thus improving the overall efficiency of optical reception and utilization therein.
Abstract:
A fiber grating demodulation system for enhancing spectral resolution of a detector array, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, and a linear array detector. The laser pump source, the wavelength division multiplexer, and the fiber Bragg grating are connected in sequence, and the wavelength division multiplexer is connected to the diaphragm. Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating. A reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror. The light splitting grating, and the imaging focus mirror in sequence, and is finally converged to the linear array detector.
Abstract:
A fiber grating demodulation system for enhancing spectral resolution by finely adjusting a slit, includes a laser pump source, a wavelength division multiplexer, a fiber Bragg grating, a diaphragm, a slit, a collimating mirror, a light splitting grating, an imaging focus mirror, and a linear array detector. The laser pump source, the wavelength division multiplexer, the fiber Bragg grating are connected in sequence, and the wavelength division multiplexer is connected to the diaphragm. Light emitted from the laser pump source is multiplexed by the wavelength division multiplexer and then enters the fiber Bragg grating, a reflection spectrum of the fiber Bragg grating enters the slit of the fiber grating demodulation system as injected light. After passing through the slit, the injected light is reflected by the collimating mirror, the light splitting grating, and the imaging focus mirror in sequence, and is finally converged to the linear array detector.
Abstract:
An optical device includes: an image-forming optical system forming an image of light from a subject; an imaging unit receiving light of the image formed by the image-forming optical system; a reflection spectroscopic device covering a given area in an imaging area of the imaging unit; and a spectrum detection unit detecting a spectroscopic spectrum of light reflected by the reflection spectroscopic device.
Abstract:
A multi-band spectrum division device is provided, comprising: a first parabolic reflection mirror, planar multi-mirrors, an optical grating and a second parabolic mirror. The first parabolic mirror is configured to reduce the divergent angle of incident optical beam, and to generate a collimated optical beam. The planar multi-mirrors are configured to adjust the incident angles of collimated beam on the grating surface. The grating is configured to disperse the incident signals with multi-wavelengths. The second parabolic mirror is configured to focus the multi-wavelength signals on its focal plane. Besides, each of the planar multi-mirrors has different location and angle in this device.
Abstract:
Snapshot spectral imagers comprise an imaging lens, a dispersed image sensor and a restricted isometry property (RIP) diffuser inserted in the optical path between the source image and the image sensor. The imagers are used to obtain a plurality of spectral images of the source object in different spectral bands in a single shot. In some embodiments, the RIP diffuser is one dimensional. An optional disperser may be added in the optical path, to provide further dispersion at the image sensor. In some embodiments, all imager components except the RIP diffuser may be part of a digital camera, with the RIP diffuser added externally. In some embodiments, the RIP diffuser may be included internally in a digital camera.
Abstract:
Aspects of a tandem dispersive range monochromator and data knitting for the monochromator are described herein. In one embodiment, the monochromator includes a tandem diffraction grating, a grating drive motor that rotates the tandem diffraction grating to provide, by diffraction of broadband light, first dispersed wavelengths of light and second dispersed wavelengths of light, a detector that detects a first reflection from the first dispersed wavelengths of light and a second reflection from the second dispersed wavelengths of light, and processing circuitry that knits together data values from the first reflection and data values from the second reflection to provide a spectrum of combined data values. By using a tandem diffraction grating having different dispersive surfaces, measurements of relatively high precision and quality may be taken throughout a wider spectral range, and the measurements may be knitted together to provide a spectrum of combined data values.
Abstract:
A system and method for using near-infrared or short-wave infrared (SWIR) sources such as lamps, thermal sources, LED's, laser diodes, super-luminescent laser diodes, and super-continuum light sources for early detection of dental caries measure transmission and/or reflectance. In the SWIR wavelength range, solid, intact teeth may have a low reflectance or high transmission with very few spectral features while a carious region exhibits more scattering, so the reflectance increases in amplitude. The spectral dependence of the transmitted or reflected light from the tooth may be used to detect and quantify the degree of caries. Instruments for applying SWIR light to one or more teeth may include a C-clamp design, a mouth guard design, or hand-held devices that may augment other dental tools. The measurement device may communicate with a smart phone or tablet, which may transmit a related signal to the cloud, where additional value-added services are performed.