Abstract:
Aspects of the present disclosure provide apparatus, methods, processing systems, and computer program products for time synchronization function (TSF) rollover solutions for short beacons. Aspects of the present disclosure provide an apparatus for wireless communications. The apparatus generally includes a processing system configured to generate a time stamp with a first value of a first portion of a counter and generate a frame including a first field with the time stamp and a second field having one or more bits with a second value of the first portion of the counter, and an interface configured to output the frame for transmission to a receiving device.
Abstract:
Systems and methods for wireless communications are disclosed. More particularly, aspects generally relate to techniques for indicating a minimum and maximum channel bandwidth in a frame (e.g., short frame). One or more bits in the frame, for example a management frame, may indicate both minimum and maximum bandwidths for communicating in the network. According to aspects, a wireless terminal may determine the minimum and maximum bandwidths for communicating in the network based on a mapping of different values of the one or more bits to combinations of minimum and maximum bandwidths. While any field in the frame may indicate the minimum and maximum bandwidth, according to aspects, the Basic Service Set (BSS) bandwidth (BW) field may be used for the indication.
Abstract:
A method includes generating a data packet at an access point. The data packet is to be communicated using a waveform that includes a first set of tones that is allocated to a first destination device and a second set of tones that is allocated to a second destination device. The first set of tones is non-overlapping with respect to the second set of tones, and each tone of the first set of tones and each tone of the second set of tones is an orthogonal frequency-division multiple access (OFDMA) tone. The method also includes transmitting the data packet to the first destination device via an institute of electrical and electronics engineers (IEEE) 802.11 wireless network and transmitting the data packet to the second destination device via the IEEE 802.11 wireless network.
Abstract:
Systems, methods, and devices for high-efficiency wireless frequency division multiplexing are provided. A method includes receiving, at a first wireless device, a reference signal from an associated access point, the reference signal indicative of a time of joint transmission with at least a second wireless device. The method further includes transmitting a first communication to the access point based on the reference signal, the communication utilizing a first subset of wireless frequencies available for use. The first communication is concurrent with a second communication, from the second wireless device, utilizing a second subset of wireless frequencies, the second subset excluding the first subset.
Abstract:
A device may signal a resource allocation scheme in a high efficiency wireless local area network (WLAN) preamble. In one example, a high efficiency (HE) WLAN signaling field is used to signal a resource allocation pattern to multiple devices. The HE WLAN signaling field includes a common user field that is decodable by the multiple devices and includes a resource allocation field. The resource allocation indicates resource unit distributions to the multiple devices and indicates which resource units in a multi-user PPDU correspond to multi-user MIMO transmissions and which resource units correspond to OFDMA single-user transmissions. The HE WLAN signaling field also includes dedicated user fields that are assigned to certain devices. The order of the dedicated user fields corresponds to the allocated resource units. The HE WLAN signaling field is transmitted with a WLAN preamble to the multiple devices.
Abstract translation:设备可以在高效无线局域网(WLAN)前导码中发信号通知资源分配方案。 在一个示例中,高效率(HE)WLAN信令字段用于向多个设备发送资源分配模式。 HE WLAN信令字段包括可由多个设备解码的公共用户字段,并且包括资源分配字段。 资源分配指示到多个设备的资源单元分布,并且指示多用户PPDU中的哪些资源单元对应于多用户MIMO传输,哪些资源单元对应于OFDMA单用户传输。 HE WLAN信令字段还包括分配给某些设备的专用用户字段。 专用用户字段的顺序对应于所分配的资源单元。 通过WLAN前导码向多个设备发送HE WLAN信令字段。
Abstract:
Methods and apparatuses for communicating over a wireless communication network using a resource unit are disclosed herein. One method includes generating a high-efficiency long training (HE-LTF) field, based on at least one of a sequence x=[+1, +1, +1, −1, −1, −1, +1, −1, −1, +1, −1], a rotation pattern C=[c1−cy], a sequence M1=[c1.*x, c2.*x, c3.*x, c4.*x, c5.*x, c6.*x, c7.*x, c8.*x, c9.*x, c10.*x, c11.*x], a sequence M2=[+1, +1, +1, +1, +1, −1, −1, +1, +1, −1, +1, −1, +1], and a sequence M3=[+1, +1, +1, −1, −1, +1, −1]. The method further includes transmitting the HE-LTF field.
Abstract:
Methods and apparatus for single and multi-user signal extensions or padding are provided. In various aspects, a number of symbols required to transmit a plurality of data bits to each of a plurality of wireless communication devices and a fraction of useful bits in a final symbol of each of the plurality of data bits is determined. A signaling extension length may also be determined based at least in part on the fraction of useful bits and a modulation and coding scheme (MCS) of each of the plurality of wireless communication devices. A plurality of data packets for each of the plurality of wireless communication devices are generated, with each data packet comprising the corresponding data bits and the signaling extension after the final symbol of each of the plurality of data packets.
Abstract:
Methods and systems disclosed provide for clear channel assessment of first and second communication channels. In one aspect, a first primary channel has a first frequency spectrum bandwidth and a second primary channel has a second frequency spectrum bandwidth including the first frequency spectrum bandwidth. A method may include performing a first back-off procedure based on whether the first primary channel is idle if a transmission bandwidth for a wireless message is the first frequency spectrum bandwidth, performing a second back-off procedure based on whether the second primary channel is idle if the transmission bandwidth for the wireless message is greater than the first frequency spectrum bandwidth, and transmitting the wireless message based on a completion of the performed back off procedure.
Abstract:
Systems, methods, and devices for communicating in a wireless network are provided. In one aspect, a method for wireless communication is provided. The method includes inserting a plurality of scrambler seeds into a data unit comprising a plurality of data portions, each scrambler seed associated with a respective data portion of the plurality of data portions. The method includes scrambling each data portion at least in part based on the associated scrambler seed. The method includes transmitting the data unit. The data portions may comprise code words or at least one media access control protocol data unit. The scrambler seed may be inserted in reserved bits of the delimiter field. The scrambler seed may be inserted in a delimiter signature field of the delimiter field.
Abstract:
Methods and apparatus for channel state information feedback are provided. In various aspects, a message is transmitted requesting channel feedback information. In some aspects, a first portion of the message is transmitted according to a first or second, and contains first information intended for a first or second set of wireless communication devices compatible with the first or second format respectively. In some aspects, a second portion of the first message is transmitted according to the second format, and contains second information intended for the second set of wireless communication devices compatible with the second format. In some aspects, the second message comprises a number of tones or spatial streams for which channel feedback information is requested, or other channel feedback information parameters.