Abstract:
A method and system for wireless communication with a mobile device in which wireless communication is established with the mobile device. A base station is used to transmit directly to the mobile device in a downlink direction. A relay node is used to transmit to the base station communications received in an uplink direction from the mobile station. The relay node relays at least a portion of the uplink traffic received from the mobile station to the base station.
Abstract:
In some embodiments of the invention, OFDM symbols are transmitted as a plurality of clusters. A cluster includes a plurality of OFDM sub-carriers in frequency, over a plurality of OFDM symbol durations in time. Each cluster includes data as well as pilot information as a reference signal for channel estimation. In some embodiments, a plurality of clusters collectively occupy the available sub-carrier set in the frequency domain that is used for transmission. In some embodiments of the invention data and/or pilots are spread within each cluster using code division multiplexing (CDM). In some embodiments pilots and data are separated by distributing data on a particular number of the plurality of OFDM symbol durations and pilots on a remainder of the OFDM symbol durations. CDM spreading can be performed in time and/or frequency directions.
Abstract:
Partner relay systems and methods are provided in which relaying is performed by a pair of partner relays. Signals received from a base station are translated by a first of the pair of partner relays to a different transmission resource for communication between the pair of partner relays, and then upon reception by a second of the pair of partner relays, the signal is translated back to the original transmission resource and re-transmitted towards the receiver.
Abstract:
Methods and systems are described that are suitable for channelization, in particular, but not limited to, the IEEE 80216.m telecommunications standard. For a time-frequency resource, physical sub-carriers for each of one or more zones in the time-frequency resource are assigned to one or more zones having a respective type of transmission. At least one zone is allocated for a type of transmission using localized sub-carriers. The physical sub-carriers assigned to each zone are permuted to map to logical sub-carriers. Groups of resource blocks are formed, in which each resource block includes at least one logical sub-carrier for each of the one or more zones. The information defining the groups of resource blocks for each of the one or more zones can then be transmitted to a user. The information may be in the form of a zone configuration index.
Abstract:
A method and system for wireless communication with a mobile device in which wireless communication is established with the mobile device. A base station is used to transmit directly to the mobile device in a downlink direction. A relay node is used to transmit to the base station communications received in an uplink direction from the mobile station. The relay node relays at least a portion of the uplink traffic received from the mobile station to the base station.
Abstract:
Transmission of uplink control message for a wireless system. The uplink control message may be encoded according to one of multiple possible schemes. The choice of encoding scheme may be made based on the control message size and/or based on the available transmission resources and/or based on the detection scheme used on the receiving end. A modulation scheme may also be selected based on such factors. CDM may be used for certain control messages. Block code encoding, such as Reed-Muller encoding may be used for certain control messages. Different transmission resources may be allocated for different control message uses. The encoding specifics may be selected to obtain a certain hamming distance and/or size of the encoded message or based on other factors.
Abstract:
Aspects of the invention include methods and devices for inserting data and pilot symbols into Orthogonal Frequency Division Multiplexing (OFDM) frames having a time domain and a frequency domain. A method involves inserting in at least one zone of a first type a two dimensional array of data and pilot symbols in time and frequency and inserting in at least one zone of a second type a two dimensional array of data and pilot symbols in time and frequency. In some implementations the zone of the first type comprises common pilot symbols that can be detected by all receivers receiving the OFDM frame. In some implementations the zone of the second type comprises dedicated pilot symbols that are only detectable by a receiver that is aware of pre-processing used to encode the dedicated pilot symbols.
Abstract:
A method and system for allocating shareable wireless transmission resources. A resource pool is established. The resource pool is divided into a plurality of physical layer allocation units usable for wirelessly transmitting control information and traffic data. The allocation units are assigned at the media access control layer for the wireless transmission of the control information and traffic data. The system and method of the present invention also allows mobile stations to be dynamically grouped into multicast groupings to reduce system overhead resource requirements.