Abstract:
In accordance with the invention, an electrical or electronic circuit is provided with one or more components of magnetoresistive material and disposed within the gap of a programmable and latchable magnet. This provides the circuit with programmable and latchable resistivity, particularly useful in transformers, amplifiers and frequency tuners.
Abstract:
Aligned Optoelectronic assembly with improved dimensional stability is disclosed. The assembly is carried out with a bonding material, either a solder or an adhesive, which contain insoluble, non-coarsening dispersoid particles. New solder compositions having enhanced mechanical properties are described. Relatively inert particles having a diameter of 5000 nm or less are dispersed in a solder material having an average grain size of approximately 10,000 nm or less to produce such solder compositions. The dispersed particles act as physical barriers in solders substantially impeding the motion of grain boundaries and inhibiting grain growth during thermal and stress cycling which substantially inhibits coarsening. As a consequence, the optoelectronic device assembly according to the invention exhibit substantially improved dimensional stability, with the rate of creep deformation at the joint reduced by a factor of at least two.
Abstract:
The invention provides a device containing a low .kappa., hydrogen-free a-C:F layer with good adhesion and thermal stability. It was found that the combination of desirable properties was attainable by a relatively easy process, as compared to processes that utilize gaseous sources, such as CVD. Specifically, the a-C:F layer is formed by sputter deposition, using only solid sources for the fluorine and carbon, and in the absence of any intentionally-added hydrogen-containing source. The sputtering is performed such that the layer contains 20 to 60 at. % fluorine, and also, advantageously, such that the a-C:F exhibits a bandgap of about 2.0 eV or greater. The a-C:F layer formed by the process of the invention exhibits a dielectric constant, at 1 MHz and room temperature, of 3.0 or less, advantageously 2.5 or less, and more advantageously 2.1 or less, along with being thermally stable up to at least 350.degree. C., advantageously 450.degree. C., and exhibiting a stress of about 100 MPa or less, in absolute value.
Abstract:
In accordance with the invention, a device for controlling alignment between two optical devices comprises a mobile magnet attached to a mobile optical device and a plurality of programmable magnets for moving the mobile magnet (and attached optical device) in relation to a second optical device. In preferred embodiments, the programmable magnets are latchable.
Abstract:
In accordance with the invention, a tunable laser uses magnets to apply mechanical strain on fiber Bragg grating reflectors or laser cavities in order to induce a change in lasing wavelength. The strain can be tensile or compressive. The tunable laser comprises a laser cavity including a laser material for emitting light in response to stimulating light and two end reflectors one or more of which can be a Bragg grating. In preferred embodiments, latchable programmable magnets vary the grating periodicity and/or cavity length in a controlled, accurate manner so as to achieve desired tuning of the laser over a broad range of wavelengths. The latchable magnets hold the wavelength in the shifted position without the need for sustained power.
Abstract:
A tunable fiber grating comprises a temperature-sensitive body secured to a fiber having a fiber grating region for transmitting thermally-induced strain to the grating. The amount of strain and hence the degree of wavelength tuning are controlled by adjusting the temperature of the temperature-sensitive body, wherein the extent of adjustment is preferably pre-determined according to feedback from a wavelength detector. Large thermal strains obtainable with the present invention allow a wide range of wavelength tuning with a relatively small and convenient temperature change near ambient temperature. In a preferred embodiment, the temperature-sensitive body is cylindrical and comprised of a nickel-titanium alloy bonded to the grating. In alternative arrangements, the thermal strain effect can be amplified. An add/drop multiplexer employing the tunable gratings is also described.
Abstract:
Improved diamond particle emitters, useful for flat panel displays, are fabricated by suspending nanometer-sized ultra-fine particles in a solution, applying the suspension as a coating onto a conducting substrate such as n-type Si or metal, subjecting the coated substrate to a plasma of hydrogen, and applying a thin, conformal diamond overcoating layer onto the particles. The resulting emitters show excellent emission properties, such as extremely low turn-on voltage, good uniformity and high current densities. In particular, the electron emitters are capable of producing electron emission current densities of at least 0.1 mA/,mm.sup.2 at extremely low vacuum electric fields of 0.2-3.0 V/.mu.m V/.mu.m. These field values are about an order of magnitude lower than exhibited by the best defective CVD diamond and almost two orders of magnitude lower than p-type semiconducting diamond. It is further found that the emission characteristics remain the same even after the plasma treated diamond surface is exposed to air for several months.
Abstract translation:用于平板显示器的改进的金刚石颗粒发射器通过将纳米尺寸的超细颗粒悬浮在溶液中来制造,将悬浮液作为涂层施涂到诸如n型Si或金属的导电基材上,使经涂覆的基材 氢的等离子体,并将薄的保形金刚石外涂层施加到颗粒上。 所得到的发射体显示出优异的发射特性,例如极低的导通电压,良好的均匀性和高的电流密度。 特别地,电子发射体在0.2-3.0V / m V /μm的极低真空电场下能够产生至少0.1mA / mm2的电子发射电流密度。 这些场值比由最好的有缺陷的CVD金刚石显示的低一个数量级,比p型半导体金刚石低两个数量级。 进一步发现即使在等离子体处理的金刚石表面暴露于空气几个月之后,发射特性也保持不变。
Abstract:
A device having a composite interconnection medium that reduces or avoids long-term reliability problems exhibited by current media, containing a first component and a second component, e.g., circuit boards, and an intermediate area between the first component and the second component. The intermediate area contains electrically conductive particles in a non-conductive matrix and compression-limiting bodies that are either located within the matrix or separately attached to one of the components. The conductive particles are arranged in chains of two or more particles across the thickness of the matrix to provide electrical connection between the first component and second component. The compression-limiting bodies substantially reduce the likelihood that dimensional changes in the components, e.g., due to warping or servicing, will stress or deform the matrix to an extent that unacceptably affects the electrical conductivity through the intermediate area.
Abstract:
New solder compositions having enhanced mechanical properties are disclosed. Relatively inert particles having a diameter of 2000 nm or less are dispersed in a solder material having an average grain size of 500 nm or less to produce such solder compositions. The dispersed particles act as physical barriers substantially impeding the motion of grain boundaries and inhibiting grain growth during thermal and stress cycling which substantially inhibits coarsening. As a consequence, the solder composition exhibits an advantageous level of superplasticity that is substantially resistant to joint failure. Methods for forming articles using such solder compositions is also disclosed.
Abstract:
Applicants have discovered methods for making, treating and using diamonds which substantially enhance their capability for low voltage emission. Specifically, applicants have discovered that defect-rich diamonds--diamonds grown or treated to increase the concentration of defects--have enhanced properties of low voltage emission. Defect-rich diamonds are characterized in Raman spectroscopy by a diamond peak at 1332 cm.sup.-1 broadened by a full width at half maximum .DELTA.K in the range 5-15 cm.sup.-1 (and preferably 7-11 cm.sup.-1). Such defect-rich diamonds can emit electron current densities of 0.1 mA/mm.sup.2 or more at a low applied field of 25 V/.mu.m or less. Particularly advantageous structures use such diamonds in an array of islands or particles each less than 10 .mu.m in diameter at fields of 15 V/.mu.m or less.