Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may determine that a profile for vehicle-based sidelink communications supports packet duplication using a set of carrier frequencies. The UE may transmit a request to a base station for resources to use to perform the vehicle-based sidelink communications, the request comprising an indication of the profile, a reliability metric associated with the profile, and an identifier that identifies the set of carrier frequencies. The UE may receive one or more grants from the base station for semi-persistent scheduling resources allocated on the set of carrier frequencies in response to the request.
Abstract:
Aspects of the disclosure relate to a vehicle, or a device or system connected to the vehicle, that enables the vehicle to act as a base station in a wireless communication network. The vehicle includes an access interface transceiver configured to communicate with devices within its passenger cabin, and a backhaul interface transceiver configured to communicate with the wireless communication network. By acting as a base station, the vehicle can establish and provide connectivity between the devices in its passenger cabin and the wireless communication network via the access transceiver and backhaul transceiver.
Abstract:
Techniques are described that support techniques for directional discovery in a millimeter wave communications system. A vehicle-to-everything (V2X) communications system may support beam discovery procedures that use directional beams to discover other entities, establish directional communication links with other entities, or maintaining directional communication links with other entities. The beam discovery procedure may include a sweep pattern where a transmitting entity may probe with directional beams in a plurality of beam directions. During a beam discovery procedure a transmitting entity may transmit discovery signals in a plurality of different directions and a receiving entity may listen for the discovery signals in a plurality of different directions. The sweep patterns of the transmitting entity and the receiving entity may be coordinated to increase a likelihood that the receiving entity will discover the transmitting entity.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE), e.g., a lead platooning vehicle configured for wireless communications, may determine a communication resource requirement for a group of platooning vehicles. The communication resource requirement may be based at least in part on a number of vehicles forming the group of platooning vehicles and a communication range of at least a portion of the vehicles. The UE may identify, based at least in part on the identified communication resource requirement, an assignment of time-frequency radio resources to use for inter-vehicle communications in the group of platooning vehicles. The UE may transmit an indication of the assignment of time-frequency radio resources to the group of platooning vehicles.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may determine to use multi-cluster communications in a vehicle based communication network. The UE may identify a configuration parameter associated with the multi-cluster communications. The UE may select a cluster resource from a set of available cluster resources based on the configuration parameter. The cluster resource may include one or more clusters used for multi-cluster transmissions in the vehicle based communication network. The UE may transmit an indication of the selected cluster resource to a wireless node of the vehicle based communication network, for example, to another UE. The UE may transmit the multi-cluster transmission on the selected cluster resource.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. In one configuration, the apparatus is a target UE. The target UE communicates an expression of the target UE to a serving entity, receives a page initiated from the serving entity for communicating with an initiator UE, and communicates securely with the initiator UE based at least on the page. In one configuration, the apparatus is a serving entity. The serving entity receives a first expression from a target UE, receives a second expression from an initiator UE, and sends a page to the target UE upon determining that the second expression matches the first expression.
Abstract:
Aspects of the present disclosure describe indicating per-packet quality of service (QoS) in communications by a wireless communications device. A packet from an application generated for a first radio access technology (RAT) can be obtained, where the packet includes a first QoS value associated with the first RAT, and/or the first QoS value can be mapped to a second QoS value associated with the second RAT. In another example, the QoS value can be indicated in the packet along with a reflective indicator indicating to use the QoS value in transmitting a response to the packet.
Abstract:
Disclosed are techniques for transmit/receive (TX/RX) beam association in millimeter wave (mmW) vehicle-to-everything (V2X) communications. In conventional wireless systems, a node (e.g., gNB) that manages wireless resources is typically stationary. This means that transmissions from the network node over the same TX beam using the same antenna array orientation can be assumed to be quasi-collocated (QCLed) and communications may be established using fixed-to-mobile beam management approach. However, if the transmitting node is mobile, a quasi-collocation (QCL) assumption may not be valid. To address issues due to mobility of the nodes that manage wireless resources, a mobile-to-mobile beam management approach is proposed.
Abstract:
Various aspects of the disclosure relate to the selection and use of modulation and coding scheme (MCS) values. For example, a first MCS table may be used for a first condition and a second MCS table used for a second condition. The disclosure relates in some aspects to inter-device signaling that indicates which MCS table is to be used for communication between the devices.
Abstract:
Methods, systems, and devices for wireless communication are described. One method for wireless communication at a first device includes receiving a multicast packet from a second device, decoding control header information in the received multicast packet, determining that a decoding procedure associated with a payload of the received multicast packet is unsuccessful and transmitting a negative acknowledgement (NACK) based at least in part on the determining. The method also includes retrieving a list of transmitter identifiers. In some cases, transmitting the NACK is based at least in part on the list of transmitter identifiers. The method further includes determining a transmitter identifier associated with the multicast packet and determining that the transmitter identifier is present in the list of transmitter identifiers.