Abstract:
In one example, a device for coding video data includes a video coder configured to code, for a tile of an enhancement layer picture, data indicating a number of tiles in a base layer picture that need to be coded before the tile of the enhancement layer picture can be coded, code tiles of the base layer picture corresponding to the number of tiles, and, after coding the tiles of the base layer picture, code the tile of the enhancement layer picture substantially in parallel with at least one other tile in the base layer picture.
Abstract:
An apparatus configured to encode video information of a picture includes a memory unit and a processor in communication with the memory unit. The memory unit is configured to store a hash table that includes at least one hash index corresponding to reference blocks in the picture, the reference blocks being a subset of available blocks in the picture. The processor is configured to map a current block to a hash index in the hash table based on the application of a hash function to the current block, identify, from the hash table, reference blocks that correspond to the hash index, select a prediction block from among the reference blocks based on a comparison of the current block to the reference blocks, and encode the video information using the selected prediction block.
Abstract:
A device configured to code video data includes: a memory configured to store video data, and at least one processor. The at least one processor is configured to: code information indicating whether a block from a current picture will flicker. A determination of whether the block from the current picture will flicker is based on the block in the current picture in a display order and a collocated block from a next picture in the display order.
Abstract:
Techniques are described for signaling information used to generate three-dimensional (3D) color lookup tables for color gamut scalability in multi-layer video coding. A lower layer of video data may include color data in a first color gamut and a higher layer of the video data may include color data in a second color gamut. To generate inter-layer reference pictures, a video encoder or video decoder performs color prediction using a 3D lookup table to convert the color data of a reference picture in the first color gamut to the second color gamut. According to the techniques, a video encoder may encode partition information and/or color values of a 3D lookup table generated for color gamut scalability. A video decoder may decode the partition information and/or color values to generate the 3D lookup table in order to perform color gamut scalability.
Abstract:
System, methods and apparatus are described that model analog behavior in a multi-wire, multi-phase communications link. A digital signal representative of a physical connection in a communications link and a virtual signal characterizing a three-phase signal transmitted over the physical connection are generated. The virtual signal may be configured to model one or more analog characteristics of the physical connection. The analog characteristics may include voltage states defining the three-phase signal. The analog characteristics of the physical connection include at least three voltage states corresponding to signaling states of the three-phase signal.
Abstract:
In one example, a device for coding video data includes a video coder configured to code, for a tile of an enhancement layer picture, data indicating a number of tiles in a base layer picture that need to be coded before the tile of the enhancement layer picture can be coded, code tiles of the base layer picture corresponding to the number of tiles, and, after coding the tiles of the base layer picture, code the tile of the enhancement layer picture substantially in parallel with at least one other tile in the base layer picture.
Abstract:
In general, techniques are described for performing residual prediction in video coding. As one example, a device configured to code scalable or multi-view video data may comprise one or more processors configured to perform the techniques. The processors may determine a difference picture, for a current picture, based on a first reference picture in a same layer or view as the current picture and a decoded picture in a different layer or view as the current picture. The decoded picture may be in a same access unit as the first reference picture. The processors may perform bi-prediction based on the difference picture to code at least a portion of the current picture.
Abstract:
Methods and systems for video image coding are provided. Sets of filters may be selected and applied to video information at least partially based on phase displacement information between a first and second layer of video information. For example, the phase displacement information may correspond to a difference between a position of a pixel in the first layer and a corresponding position of the pixel in the second layer. The selected filter set can be an up-sampling filter or a down-sampling filter. The phase displacement information may be encoded as a syntax element embedded in the video bit stream.
Abstract:
A video coder may determine a motion vector of a non-adjacent block of a current picture of the video data. The non-adjacent block is non-adjacent to a current block of the current picture. Furthermore, the video coder determines, based on the motion vector of the non-adjacent block, a motion vector predictor (MVP) for the current block. The video coder may determine a motion vector of the current block. The video coder may also determine a predictive block based on the motion vector of the current block.
Abstract:
A method of decoding video data, including receiving a first block of video data encoded using an inter-prediction mode associating a first intra-prediction mode with the first block of video data, wherein the first intra-prediction mode is associated with a second block of video data, and determining a second intra-prediction mode for a neighbor block of video data based at least in part on the first intra-prediction mode.