Abstract:
In a wireless communication system, user equipment (UE) has autonomy provided by one or more set of rules to handle processing during a measurement gap. UE can ignore or use only a portion of the whole measurement gap if not needed. Thereby, an urgent need for remaining tuned to source carrier frequency can be supported, such as utilizing Random Access Channel (RACH) procedure. UE can also choose to tune to a target carrier frequency supporting timely handovers. Depending on the type of processing required (download shared channel (DL-SCH, UL-SCH, TTI bundling, RACH or SR), the UE may store requests and process the measurements during the gap or ignore the gap measurement as if there were no gaps.
Abstract:
Methods, systems, and devices are described for signaling reduced user equipment (UE) feature support in wireless networks. A UE may retrieve a performance capability of the UE in relation to a feature of a wireless communication system for which a minimum performance capability is specified by a wireless communication standard. The UE may accordingly signal to a base station a capability of the UE to support the wireless communication feature at a reduced level that is below the minimum performance capability specified by the wireless communication standard, and communicate with the base station using the feature at the reduced level based on an indication from the base station.
Abstract:
Techniques for signaling carrier bandwidths supported by a user equipment (UE) for carrier aggregation are disclosed. A UE may be configured with a plurality of carriers for carrier aggregation. Each carrier may have one carrier bandwidth of a set of possible carrier bandwidths. The set of possible carrier bandwidths may be dependent on a band in which the carrier belongs. Multiple combinations of carrier bandwidths for the plurality of carriers may be possible. The UE may identify at least one supported carrier bandwidth combination for the plurality of carriers. Each of the supported carrier bandwidth combinations may include a particular carrier bandwidth for each configured carrier. The UE may send signaling indicative of the at least one supported carrier bandwidth combination. The UE may thereafter communicate on the plurality of carriers based on a carrier bandwidth combination selected from the supported carrier bandwidth combination(s).
Abstract:
Aspects of the present disclosure provided techniques that for wireless communications by a user equipment (UE). An exemplary method, performed by a UE, generally includes obtaining a first system information message from a wireless network configured to utilize Multimedia Broadcast multicast service Single Frequency Network (MBSFN) subframes and non-MBSFN subframes, determining, based on the first system information message, a first set of valid subframes and a first set of non-MBSFN subframes, obtaining a second system information message from the wireless network based on the first set of valid subframes and the first set of non-MBSFN subframes, and accessing the wireless network based on the first system information message and the second system information message.
Abstract:
In an aspect, while a mobile device is operating in a RRC_Idle State, an RRC_Suspended State, an RLF State and/or an RLF Recovery Procedure State, the mobile device may transmit a connection establishment message to a base station of a plurality of base stations. In an aspect, the connection establishment message includes information that indicates whether the mobile device has information associated with signals transmitted by one or more base stations of the plurality of base stations. The mobile device may initiate transmission of the information associated with the signals to the base station subsequent to establishing a security context for the connection between the mobile device and the base station.
Abstract:
This disclosure provides systems, methods, and apparatuses for low latency handover between secondary nodes (SNs). In one aspect, a user equipment (UE) may receive a configuration for a plurality of SNs, receive a command to communicate via an SN of the plurality of the SNs, and determine a handover procedure that is to be used to establish a connection with the SN. The handover procedure may be a random access channel (RACH)-less or a two-step RACH procedure and is determined to be used based on a determination that uplink time synchronization is established with the SN.
Abstract:
Aspects of the present disclosure describe managing beams in wireless communications. A beam management event configuration indicating a type of at least one beam to measure in determining occurrence of a trigger condition for a beam management event can be received. A parameter of a signal received from one or more nodes can be measured, where the signal corresponds to the type of the at least one beam. The occurrence of the trigger condition for the beam management event can be determined based on the parameter of the signal. An indication of the occurrence of the trigger condition can be reported to the one or more nodes or a different node.
Abstract:
A method of wireless communication includes determining, based on a plurality of network measurements performed by a user equipment (UE), one or more measurement log files associated with the plurality of network measurements. The method further includes receiving, by the UE from a network device, a request associated with the one or more measurement log files. The request indicates at least one measurement filter. The method further includes transmitting, by the UE to the network device, a response to the request. The response includes first measurement results of the one or more measurement log files selected based on the at least one measurement filter and excludes second measurement results of the one or more measurement log files based on the at least one measurement filter.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may detect that a timer has expired prior to completing a handover of the UE from a source base station (BS) to a target BS. In some aspects, the UE may selectively declare, based at least in part on detecting that the timer has expired, a radio link failure. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communication are described. An aerial UE may receive control signaling that indicates a plurality of beam measurement configurations that the aerial UE is to use for beam measurement and reporting associated with a plurality of beams. The aerial UE may monitor a set of beams of the plurality of beams in accordance with a subset of beam measurement configurations of the plurality of beam measurement configurations based on a current time, a current location of the aerial UE, or both, for example. The aerial UE may transmit a measurement report indicating one or more measurements of a subset of beams of the set of beams in accordance with the subset of beam measurement configurations. In some examples, the subset of beam measurement configurations may be associated with an altitude threshold, a three-dimensional zone, or a combination thereof.