Abstract:
An imaging device according to an aspect of the present disclosure is provided with: a light source that, in operation, emits pulsed light including components of different wavelengths; an encoding element that has regions each having different light transmittance, through which incident light from a target onto which the pulsed light has been irradiated is transmitted; a spectroscopic element that, in operation, causes the incident light transmitted through the regions to be dispersed into light rays in accordance with the wavelengths; and an image sensor that, in operation, receives the light rays dispersed by the spectroscopic element.
Abstract:
A transient grating (TG) is used as an optical gating element with sub-picosecond time resolution for luminescence measurements from a photo-detector array. The transient grating is formed in a gate medium by one or more pulsed gate beams. For photoluminescence measurements such as photoluminescence spectroscopy or imaging, a source is excited by a pulsed excitation beam, and the pulsed gate beams are synchronized to the pulsed excitation beam with an adjustable delay between the excitation of the source and the formation of the TG. Moreover, a source or its spectra can be imaged at two different regions of the photo-detector array at two different times spaced in time by a selected duration of time with sub-picosecond resolution over a range of a nanosecond or more. A beam from the source is deflected to the different regions by changing the frequency or geometry of the pulsed gate beams.
Abstract:
Optical imaging or spectroscopy described can use laminar optical tomography (LOT), diffuse correlation spectroscopy (DCS), or the like. An incident beam is scanned across a target. An orthogonal or oblique optical response can be obtained, such as concurrently at different distances from the incident beam. The optical response from multiple incident wavelengths can be concurrently obtained by dispersing the response wavelengths in a direction orthogonal to the response distances from the incident beam. Temporal correlation can be measured, from which flow and other parameters can be computed. An optical conduit can enable endoscopic or laparoscopic imaging or spectroscopy of internal target locations. An articulating arm can communicate the light for performing the LOT, DCS, or the like. The imaging can find use for skin cancer diagnosis, such as distinguishing lentigo maligna (LM) from lentigo maligna melanoma (LMM).
Abstract:
Provided is a Fourier transform spectroscopy method that removes restrictions on spectral resolution and spectral accuracy in Fourier transform spectroscopy for observing a cyclic repeating phenomenon, that realizes, theoretically, infinitesimal spectral resolution accuracy. After accurately and sufficiently stabilizing the repetition period of a phenomenon, a temporal waveform is acquired by making a repetition period and a time width for observing the temporal waveform of a phenomenon strictly conform, and by performing a Fourier transform, acquired is a discrete separation spectrum in which the inverse number of the observation time window size T is made a frequency data gap. Measurement is repeated while causing the repetition period to change, and the gap of the discrete separation spectrum is supplemented. Thereby, in a case of an observation target in which the existence time of a phenomenon is longer than the repetition period, the spectral resolution of the obtained discrete separation spectrum becomes infinitesimal.
Abstract:
A method for recording pulse signals which allows the reconstruction of a time reference. The time of every pulse signal event can be determined by counting sampling result bits preceding the respective sampling result bit using the known sampling frequency. For this purpose, every period of the sampling frequency is associated with a bit representing the respective sampling result and the sampling result bits are stored one by one and per channel in data blocks. The sampling frequency is preferably higher than a pixel clock, a sampling result bit associated with a flank of the pixel clock being marked. The pixel clock can thus be synchronized with the individual events exactly per sampling period. The invention further relates to the field of fluorescence correlation spectroscopy using confocal microscopes or laser scanning microscopes.
Abstract:
An apparatus visualizing internal information of an object includes a detection unit of terahertz wave, a generating unit of a time waveform of the terahertz wave, a modulation unit, an adjustment unit, and an addition unit. The modulation unit sequentially performs spatial modulation on a propagation distance for each pixel of a terahertz wave corresponding to a pixel in a horizontal direction by using a plurality of modulation patterns, and emits a plurality of terahertz waves. Based on a time amount converted from the change of the propagation distances corresponding to the modulation patterns, the adjustment unit adjusts a position on a time axis of the time waveforms of a plurality of terahertz waves and calculates a new plurality of time waveforms. The addition unit adds a new time waveform for each pixel. The apparatus can suppress reduction in signal intensity of a terahertz wave while maintaining detection sensitivity.
Abstract:
Provided is an optical sensor interrogation system. The optical sensor interrogation system includes: a light source unit which matches round-trip time of light and wavelength tunable cycle time of light in a resonator and emits light; a sensing unit which receives an optical signal in which a center wavelength periodically tunes, from the light source unit and tunes the center wavelength of the optical signal according to physical changes applied from the outside; and a signal processing unit which receives the optical signal reflected from the sensing unit, detects data, and images the data. In particular, the light source unit includes a delaying unit which delays the round-trip time of light and a tunable filter which tunes the wavelength of light so as to match the round-trip time of light with the wavelength tunable cycle time of light. Accordingly, a Fourier domain mode locking (FDML) wavelength swept laser, which operates at speed of several tens kHz or above, is used as a light source so that strain of a fluid, which changes in a short time interval of 0.1 msec or below, is precisely measured and thus a real-time analysis may be performed at high speed.
Abstract:
A digital imaging device comprising a light source, a pixel array detector having a rolling shutter functionality, a spatial light modulator configured to produce one or more modulation patterns during a frame exposure of the pixel array detector, and at least one timing signal configured to control a spatial-temporal relationship between a rolling shutter of the pixel array detector and the one or more modulation patterns provided by the spatial light modulator.
Abstract:
One embodiment of the present invention provides a system that characterizes a biological sample by analyzing light emissions from the biological sample in response to an excitation. The system first radiates the biological sample with a laser impulse to cause the biological sample to produce a responsive light emission. Next, the system uses a wavelength splitting device to split the responsive light emission into a set of spectral bands of different central wavelengths. The system applies temporal delays to the set of spectral bands so that each spectral band arrives at an optical detector at a different time, thereby allowing the optical detector to temporally resolve the responsive light emission for each spectral band separately. Next, the system captures the delayed spectral bands within a single detection window of the optical detector. The system then processes the captured spectral bands.
Abstract:
A time correlated single photon counting system having a programmable delay generator triggered by a laser fire event detector. The system may be used for chemical agent detection based on Rayleigh scattering using optical time domain reflectometry techniques. The system may also be used for Raman detection using frequency to time transformations.