Abstract:
Provided are a method and a device for transmitting an acknowledgement/not-acknowledgement (ACK/NACK) of a terminal which is set with a plurality of serving cells. The method comprises the steps of: receiving data in a subframe n of a second serving cell; and transmitting an ACK/NACK signal for the data in a subframe n+kSCC(n) of a first serving cell connected to the subframe n of the second serving cell, wherein the first serving cell is a primary cell for the terminal to execute an initial connection establishment procedure or a connection reestablishment procedure, and uses a frequency division duplex (FDD) wireless frame, the second serving cell is a secondary cell allocated to the terminal in addition to the primary cell, and uses a time division duplex (TDD) wireless frame, and the kSCC(n) is a previously determined value.
Abstract:
A method is provided for transmitting a physical uplink control channel (PUCCH) in a wireless communication system supporting multiple antennas. The method is performed by a user equipment (UE) having a first antenna port and a second antenna port, and configured for using a multiple-antenna transmit mode for transmission using multiple antennas and a single-antenna transmit mode for transmission using a single antenna. The UE determines that the multiple-antenna transmit mode is to be used for transmitting the PUCCH, and determines a transmit power offset value to be added to a transmit power of the PUCCH depending on a PUCCH format to be used for transmitting the PUCCH using the first and second antenna ports. The UE transmits the PUCCH by using a first PUCCH resource through the first antenna port, and transmits the PUCCH by using a second PUCCH resource through the second antenna port.
Abstract:
Disclosed is a method for transmitting a multicast broadcast single frequency network (MBSFN) subframe, including: configuring, by a base station (BS), at least one subframe, among a plurality of subframes included in a downlink radio frame, to an MBSFN subframe; determining, by the BS, resource allocation with respect to a tracking reference signal in the at least one configured MBSFN subframe based on whether a physical multicast channel is transmitted in the at least one configured MBSFN subframe; and transmitting, by the BS, the tracking reference signal through an MBSFN subframe in which the PMCH is not transmitted among the at least one configured MBSFN subframe.
Abstract:
A method for uplink transmission in a wireless communication system, and a user equipment (UE) therefore are discussed. The method according to an embodiment includes determining a transmission power of a first uplink signal; determining a transmission power of a second uplink signal; preparing to transmit the first uplink signal toward a first cell belonging to a first timing advance group (TAG); preparing to transmit the second uplink signal toward a second cell belonging to a second TAG; and if the first uplink signal toward the first cell belonging to the first TAG at an nth subframe and the second uplink signal of the second cell belonging to the second TAG at an (n+1)th subframe are overlapped, determining whether to adjust a total transmission power or drop the first uplink signal at the nth subframe.
Abstract:
A method for a base station (BS) to perform a hybrid automatic repeat request (HARQ). The BS transmits an uplink (UL) grant for a first subframe of a second serving cell through a first serving cell. The BS receives UL data based on the UL grant in the first subframe, transmits an acknowledgement/non-acknowledgement (ACK/NACK) for the UL data through a physical HARQ indicator channel (PHICH) in subframe i of the first serving cell and receives non-adaptively retransmitted UL data in a second subframe of the second serving cell if a NACK for the UL data has been transmitted through the PHICH in the subframe i of the first serving cell. The first serving cell and the second serving cell use different UL-DL configurations.
Abstract:
Provided is a method of transmitting ACK/NACK in a TDD-based wireless communication system. The method includes: receiving M downlink subframes associated with an uplink subframe n in each of two serving cells; determining four candidate resources based on the M downlink subframes received in each of the two serving cells; and transmitting an ACK/NACK response for the M downlink subframes by using one resource selected from the four candidate resources in the uplink subframe n, wherein the two serving cells includes a first serving cell and a second serving cell, and wherein among the four candidate resources, a first resource and a second resource are associated with a PDSCH or a SPS release PDCCH for releasing semi-persistent scheduling received in the first serving cell, and a third resource and a fourth resources are associated with a PDSCH received in the second serving cell.
Abstract:
A method is provided for uplink transmission in a wireless communication system. A user equipment (UE) configures multiple timing advance groups (TAGs), determines a power for transmitting a sounding reference signal (SRS) toward a first serving cell in a first TAG, determines a power for transmitting an uplink channel toward a second serving cell in a second TAG, determines whether a portion of a last symbol of an ith subframe for transmitting the SRS toward the first serving cell in the first TAG is overlapped with an (i+1)th subframe for transmitting the uplink channel toward the second serving cell in the second TAG, and drops the SRS transmission on the last symbol in the ith subframe if a total power of the SRS and the uplink channel exceeds a maximum value on the overlapped portion of the last symbol.
Abstract:
A communication method in a wireless communication system, and a wireless device therefore are discussed. The method according to one embodiment includes receiving a first control channel including first scheduling information on a first physical downlink shared channel (PDSCH) to be received in a first subframe; receiving a second control channel including second scheduling information on a second PDSCH to be received in a second subframe; determining whether the first subframe in which the first PDSCH is to be received is overlapped with the second subframe in which the second PDSCH is to be received; and if the first subframe is determined as being overlapped with the second subframe, determining a valid subframe for receiving at least one of the first PDSCH and the second PDSCH.
Abstract:
Provided are a method and an apparatus for transmitting uplink control information performed by a user equipment in a wireless communication system. The method comprises the steps of: receiving a first parameter for indicating whether to simultaneously transmit a first combination of an acknowledgement/negative-acknowledgement (ACK/NACK) and a channel quality indicator (CQI), and a second parameter for indicating whether to multiplex a second combination of an ACK/NACK and the CQI and transmitting same as a second physical uplink control channel (PUCCH) format; and multiplexing the first combination of the ACK/NACK or the second combination of ACK/NACK with the CQI and transmitting same as a first PUCCH format or the second PUCCH format, based on the first parameter and the second parameter.
Abstract:
A method of controlling an uplink transmission in a wireless communications system, and a user equipment therefore are discussed. The method according to one embodiment includes configuring the user equipment with multiple component carriers; receiving first configuration information for allocating one or more component carrier sets; receiving second configuration information for periodically transmitting an uplink signal; receiving control information for configuring states of component carriers, by which a downlink component carrier and an uplink component carrier are controlled to be in a same state; and performing a procedure for periodically transmitting the uplink signal on an uplink component carrier in use of the first configuration information, the second configuration information and the control information. When the uplink component carrier is in the active state, a transmission of the uplink signal is performed. When the uplink component carrier is in the non-active state, the transmission of the uplink signal is skipped.