Abstract:
A method of manufacture and medical apparatus that provides an apparatus useful in illuminating at least a portion of a lumen of a body. The apparatus includes an elongated flexible member and a polymer encasement portion encasing a plurality of light emitters. The light emitters may be electrically coupled to one another without the use of wire bonds, and in some embodiments may be coupled without intervening electrical paths or traces. A maximum cross-sectional dimension of the polymer encasement portion may be less than twice a dimension of one of the light emitters. In some embodiments the maximum cross-sectional dimension is less than or equal to the sum of the dimension of one of the light emitters and a marginal dimension by which an outer portion of the polymer encasement portion extends beyond the light emitter. Light emitters may be arranged linearly, helically or in partially overlapping back-to-back relation.
Abstract:
A photodynamic therapy balloon catheter with microporous membrane is provided which has an elongated optical fiber, an inner tubular member, a porous balloon member surrounding the inner tubular member, and fluid material provided between the inner tubular member and the porous balloon member. The porous balloon member having a plurality of holes of a size to permit medication delivered through a lumen to pass outwardly through the holes. The balloon carries on an outer surface a substantially hydrophilic, tubular microporous membrane covering the holes, to break up streams of flowing medication. Light-reflective material is included in any one of a plurality of the inner member, fluid material, porous balloon member, and microporous membrane in any combination to provide a uniform light illumination for activating treatment fluids located on an elongated treatment site within a living body.
Abstract:
The present invention relates to a method for integrating an electronic circuit in or on a medical stent. The method comprises obtaining (101) a deformable medical stent (21) in a substantially planar shape, in which the deformable medical stent is adapted for being deployed in a substantially cylindrical shape in the body. The method also comprises attaching (104) a deformable electronic circuit (22) onto the deformable medical stent in the planar shape thereby forming a deformable hybrid structure. The method also comprises shaping (107) said hybrid structure into the cylindrical shape.
Abstract:
Reperfusion injury is limited during endovascular therapies (e.g., revascularization and/or reperfusion of end organ tissues) by conditioning the tissues against reperfusion injury using an optical fiber catheter to deliver far red and near infrared (R/NIR) light to the tissues. The light may be multiple wavelength or single wavelength light, and may have one or more wavelengths selected from the range of 510 to 830 nm. The R/NIR light may be delivered concurrently with the endovascular therapy, or in other instances may be delivered before or after a particular therapy.
Abstract:
In some embodiments, an apparatus includes a catheter having a catheter body, a light emitter disposed at a distal end of the catheter body, and a fluid conduit coupleable to a source of fluid. The fluid conduit configured to discharge fluid from the source via the conduit and out a distal end of the catheter body. A spacing member is disposed at the distal end of the catheter body and can be moved between a collapsed configuration and an expanded configuration. In the expanded configuration, the spacing member is disposed about the light emitter. The spacing member is at least partially transmissive and/or transflective of light emitted from the light emitter. The apparatus configured to be inserted at least partially into a body lumen, to discharge fluid into the body lumen, and to emit light from the light emitter to illuminate an interior wall of the body lumen.
Abstract:
A peripheral surface-emitting linear light guide is provided with an optical fiber including a core, an outer peripheral surface of which is exposed from a cladding at one end in a longitudinal direction, and a light-scattering member that covers an entire periphery of the outer peripheral surface of the core in an exposed portion over a predetermined axial length range. The light emitted from the outer peripheral surface of the core is scattered and radiated by the light-scattering member. The light-scattering member includes a light transmissive base material having a higher refractive index than the core and light-scattering particles that scatter the light incident on the base material, and the light-scattering particles are dispersed and mixed in a certain proportion throughout the base material. At least a portion of the light-scattering member in the longitudinal direction is an increasing portion whose thickness increases gradually toward a tip side of the core.
Abstract:
Systems and methods for isolating a biological vessel from a surrounding target tissue include administering an energy-activatable substance to at least a portion of the target tissue and activating the energy-activatable substance via intraluminal irradiation of the portion of the target tissue with the energy-activatable substance, preferably while keeping the vessel wall substantially intact.
Abstract:
The disclosed technology relates to a system for delivering UV-A/B light with a catheter to treat infectious or inflammatory disorders in a patient. While UV light in the UV-C range has traditionally been used to treat skin disorders and for focused ablation of plaques in the arteries and other targeted internal uses, it has not been developed for broader infection, inflammation or neoplasia treatment inside the human body. Here, the inventor(s) developed a system for emission of therapeutic doses of UV light via a catheter, capsule, endoscope, tube or port that can be used to manage internal infections and inflammatory conditions inside a patient.
Abstract:
A light-emitting, antimicrobial tuber, instrument or catheter includes a thin, flexible tube having an optically transparent wall; and a light transmitter configured and arranged to emit light through the tube, which may be ultraviolet C (UVC) irradiation, photodynamic therapy (PDT), violet-blue light therapy, and other light-based therapies. In one embodiment, violet-blue light from 400-500 nm in wavelength, such as 405 nm, for instance, is used. The device is used on a patient and a therapeutic amount of light is administered to the patient, thereby reducing the risk of infections being transmitted from the instrument, tube or catheter to the patient, generally. The device may be configured for use in the urinary tract or as intravascular, and may be indwelling or temporary. Light may be administered for the duration of use or another time period effective to halt, inhibit, or reduce microbial or fungal growth.
Abstract:
Devices, systems, and methods for treating aneurysms and other medical conditions. A method of the present disclosure includes the steps of introducing a device into a lumen of a mammalian luminal organ at or near an aneurysm, the device comprising an expandable member, and a material layer coupled to the expandable member, wherein the expandable member is configured to attach to an elongated body configured to deliver an inflation material therethrough and into the expandable member, and inflating the expandable member so that the material layer contacts the mammalian luminal organ and adheres to the mammalian luminal organ at or near the aneurysm.