Abstract:
A perpendicular magnetic recording medium having good perpendicular magnetic anisotropy. The magnetic recording medium includes a tantalum (Ta) seedlayer and a ruthenium (Ru) underlayer. The magnetic recording layer can be fabricated from cobalt (Co) alloys. With the Ta seedlayer, the perpendicular anisotropy and c-axis orientation of the magnetic recording layer are greatly enhanced. Unity squareness is achievable as is a negative nucleation field. The magnetic recording medium can be formed by sputtering the various layers onto a substrate. Thus, a perpendicular magnetic recording medium suitable for mass production is provided.
Abstract:
A laminate structure includes an antiferromagnetic layer, a pinned magnetic layer, and a seed layer contacting the antiferromagnetic layer on a side opposite to pinned magnetic layer. The seed layer is constituted mainly by face-centered cubic crystals with (111) planes preferentially oriented. The seed layer is preferably non-magnetic. Layers including the antiferromagnetic layer, a free magnetic layer, and layers therebetween, have (111) planes preferentially oriented.
Abstract:
The present invention provides a sliding member which is a combination of sliding members to be operated in water-based environments and which has excellent wear resistance in water-based environments. An amorphous carbon film with a thickness of 0.1 to 5 μm and a hardness of 7 to 25 GPa is formed on at least one of the sliding surfaces of the sliding part of the sliding member. In a preferred mode, a hydrogenated amorphous carbon film comprising 5 to 40 at % hydrogen is formed as the aforementioned amorphous carbon film so as to achieve greater wear resistance.
Abstract:
A metallic surfactant, e.g., Sb, Bi, As, or atomic hydrogen is used to grow a high quality, relaxed, relatively thin SiGe buffer having a very smooth surface and a very low threading dislocation density, on which high-quality films are epitaxially grown for various applications.
Abstract:
A method of making a corrosion-resistant, non-stick coating having extended life for foodware. The method includes providing a foodware substrate having a food-contacting surface; roughening the food-contacting surface of the foodware substrate; depositing a continuous ceramic coating by vapor deposition over the roughened food-contacting surface, the continuous ceramic coating selected from nitride or carbonitride compounds of a metal selected from titanium, aluminum, chromium, zirconium, or alloys thereof; and depositing a non-stick coating over the continuous ceramic coating. The invention also relates to foodware made by the method.
Abstract:
This invention provides a thermal barrier ceramic coating for application to a metallic article, with the ceramic coating having a formula of NdxZr1−xOy with Z dissolved in, where 0
Abstract translation:本发明提供了一种用于金属制品的热障陶瓷涂层,其中陶瓷涂层具有下式:Nd x 1 x 1-x O y y SUB>与Z溶解,其中0
Abstract:
A foodware article having a thermally stable color, tarnish-resistant ceramic coating that enables direct contact with a heat source, such as a gas flame or the heating element of an electric stove. The foodware article of the present invention includes a metal foodware article having an inner food-contacting surface and an outer heat source-contacting surface, a bonding layer deposited on a portion of the outer heat source-contacting surface, and a first ceramic layer deposited adjacent to a portion of the bonding layer, the first ceramic layer selected from (Ti,Al)N, (Ti,Al)CN, (Ti,Al,X)N, or (Ti,Al,X)CN. A top layer of TiCN can be deposited adjacent to the first ceramic layer. There may optionally be alternating layers of a third ceramic selected from (Ti,Al)N, (Ti,Al)CN, (Ti,Al,X)N, or (Ti,Al,X)CN and a fourth ceramic selected from TiN, TiCN, XN or XCN deposited adjacent to the bonding layer and below the first ceramic layer. The alternating layers can be repeated as many times as desired. A method of making such a foodware article is also disclosed.
Abstract:
A perpendicular magnetic recording medium having a substrate, a seedlayer on the substrate and a magnetic underlayer on the seedlayer, the magnetic underlayer having an easy axis of magnetization substantially directed in a radial or transverse direction, and a process for manufacturing the perpendicular magnetic recording medium are disclosed.
Abstract:
Transparent conductive films for flat panel displays and methods for producing them are disclosed. In general, a method according to the present invention comprises: (1) providing a flexible plastic substrate; (2) depositing a multi-layered conductive metallic film on the flexible plastic substrate by a thin-film deposition technique to form a composite film, the multi-layered conductive metallic film comprising two layers of an alloy selected from the group consisting of indium cerium oxide (InCeO) and indium tin oxide (ITO) surrounding a layer of an alloy of silver, palladium, and copper (Ag/Pd/Cu); and (3) collecting the composite film in continuous rolls. Typically, the thin-film deposition technique is DC magnetron sputtering. Another aspect of the invention is a composite film produced by a method according to the present invention. Still another aspect of the invention is a composite film comprising a multilayered film as described above formed on a flexible plastic substrate, wherein the composite film has a combination of properties including: transmittance of at least 80% throughout the visible region; an electrical resistance of no greater than about 10 null/square; a root-mean-square roughness of no greater than about 2.5 nm; and an interlayer adhesion between the multi-layered metallic film and the remainder of the composite film that is sufficiently great to survive a 180null peel adhesion test.
Abstract:
A method for the modification of a surface of a silver electrode wherein the surface is treated with a chlorine plasma is described. Control of the power, flux density and timing provide the manner to modify the silver surface, and so implant the chlorine atoms and ions into the silver. The present invention provides a method to produce thin-film silver electrodes with a very controlled surface. Such electrodes can provide quantitative quality of measurement. The present invention extends to a method for the modification of a surface of any metal wherein the surface is treated with a plasma.