Abstract:
Techniques to support emergency voice-over-Internet Protocol (VoIP) calls are described. The techniques may be used for various 3GPP and 3GPP2 networks, various location architectures, and various types of User Equipment (UE). A UE communicates with a visited network to send a request to establish an emergency VoIP call. The UE interacts with a location server instructed by the visited network to obtain a first position estimate for the UE. The UE performs call setup via the visited network to establish the emergency VoIP call with a PSAP, which may be selected based on the first position estimate. The UE may thereafter perform positioning with the location server to obtain an updated position estimate for the UE, e.g., if requested by the PSAP.
Abstract:
Techniques for supporting location services for a base station such as a home Node B (HNB) and its user equipments (UEs) are disclosed. In an aspect, location services may be supported for a UE by having an HNB inter-work between user plane and control plane location solutions. In another aspect, a location server may be used to support assisted GNSS (A-GNSS) for HNBs and UEs. In one design, a location server receives a positioning request including an identification value from a base station, determines a positioning method based on the identification value, sends a positioning response to the base station based on the positioning method, receives positioning information from the base station, determines the position of the base station based on the positioning information, and stores the position of the base station.
Abstract:
Techniques are discussed for supporting positioning with ambiguous wireless cells. An ambiguous cell may employ a Distributed Antenna System (DAS), one or more Remote Radio Heads (RRHs), repeaters or relays, or may broadcast the same Positioning Reference Signal (PRS) as another nearby cell. In example techniques, measurements of a radio source in an ambiguous cell (e.g. a DAS antenna element or RRH) may be used to identify the measured radio source. The measurements may be for the Observed Time Difference of Arrival (OTDOA) position method or the Enhanced Cell ID (ECID) position method. The determination of the measured radio source for an ambiguous cell may be used to improve a location estimate for a user equipment (UE).
Abstract:
Techniques for querying for information on location sessions in a user plane location architecture are described. In an aspect, a location server may send a query message to a terminal to query for information on active location sessions, e.g., when at least one location session for periodic triggered service or area event triggered service is deemed to be active. The terminal may return a response message containing a list of session identifiers (IDs) for the active location sessions, parameters for the active location sessions, capabilities of the terminal, etc. The location server may compare the information received from the terminal and information stored at the location server. The location server may terminate each location session deemed to be active at only the terminal or only the location server. The location server may restart or terminate each location session having inconsistent parameters at the terminal and the location server.
Abstract:
Methods and apparatuses for providing support for location and emergency calls for an over-the-top (OTT) service provider (SP) are disclosed. An access network node receives a first message from a UE, determines a location reference for the UE, and sends a second message including the location reference to the UE. The access network node may determine the location reference itself on behalf of a location server or may request the location server to assign and return the location reference. The access network node may serve as a proxy and avoid interaction between the UE and the location server. The location server may later receive a location request for the UE from a network entity wherein the location request includes the location reference. The location server may locate the UE using the location reference and return the UE location to the network entity.
Abstract:
Techniques for access point acquisition using the location of a mobile device and probabilistic self-learning are described herein. An example of a method of scanning for an access point with a mobile device includes determining a plurality of locations associated with the access point, determining a detection probability of the access point for each location, determining that the mobile device is at one location of the plurality of locations, and performing a scan for the access point wherein a rate of the scan is based on the detection probability for the one location.
Abstract:
Techniques for using device-related information for positioning of a mobile device include providing non-unique device-related information by a mobile device to a location server. Such device-related information can be conveyed from a mobile device to a server in positioning protocols. The device related information may comprise information about an Original Equipment Manufacturer (OEM) for a mobile device, a model, a version and information about wireless chip OEMs, models and versions and may enable a positioning characteristic for the mobile device to be retrieved from stored data to support positioning of the mobile device. Techniques can also include a location server gathering information regarding a positioning characteristic for a mobile device and storing this information in association with the mobile device type which may reduce or avoid the need to configure stored data.
Abstract:
Methods and apparatuses are presented for obfuscating the locations of terrestrial wireless transceivers, including wireless access points and femtocells. According to some embodiments, a method may receive, by a mobile device, data for a terrestrial wireless transceiver, wherein the data includes location coordinates of the terrestrial wireless transceiver, and wherein the location coordinates include an error term. Additionally, the method may include determining the error term based on the data. Furthermore, the method may include determining a corrected location of the terrestrial wireless transceiver by removing the error term from the location coordinates. In some instances, the data can further include a unique identifier associated with the terrestrial wireless transceiver, and wherein the error term is further determined based on the unique identifier.
Abstract:
A method of providing location services at a location server for a venue includes: receiving a request for location service, where the request for location service comprises at least one of a first identification of at least one mobile device or an identification of a target area; and sending a response, where the response comprises at least one of a second identification of at least one mobile device or an identification of a geographic area, where at least one of the first identification of at least one mobile device, the second identification of at least one mobile device, the identification of the target area, or the identification of the geographic area comprises a venue-specific identification.
Abstract:
Disclosed are systems, methods and devices for responding to changes in a wireless access type occurring in connection with a handover event affecting a mobile terminal while the mobile terminal is engaged in a position determination session with a location server. If a first positioning protocol employed in the position determination session is not supported or enabled by the changed wireless access type, the position determination session may be resumed or restarted using a second positioning protocol supported or enabled by the changed wireless access type.