Abstract:
Aspects of the present disclosure provided techniques that for wireless communications by a user equipment (UE). An exemplary method, performed by a UE, generally includes determining one or more locations for receiving system information for machine type communication (MTC) over a bundled transmission and decoding the system information received at the locations over the bundled transmission.
Abstract:
Techniques for handling Channel State Information (CSI) for ultra low latency (ULL) in Long Term Evolution (LTE) devices are presented. For example, an example method of reporting CSI to a network entity is presented. Such an example method may include detecting a CSI reporting trigger for reporting CSI to the network entity and identifying, based on detection of the CSI reporting trigger, a subframe region for which the CSI is to be generated. In an aspect, the subframe region is included in a plurality of subframe regions, where each subframe region of the plurality of subframe regions includes at least one symbol of a subframe. In an additional aspect, the example method may include generating the CSI based on the subframe region and transmitting the CSI to the network entity.
Abstract:
Various aspects described herein relate to receiving a first communication over a first set of resources based on a first transmission time interval (TTI), receiving a second communication over a second set of resources based on a second TTI, where the second TTI is smaller than the first TTI, and where the second set of resources overlap the first set of resources defining a common set of resources, and determining whether to prioritize decoding of the first communication over the second communication.
Abstract:
Apparatus and methods, in one or more aspect, provide feedback with respect to downlink grant feedback communications received by a user equipment (UE). The apparatus and methods monitor for signals from a network entity on one or more channels, and determine, based on the monitoring, whether one or more grants are received and whether UE data is received on the one or more channels. Further, the apparatus and methods generate a feedback indication having a feedback value determined according to a feedback rule and based on whether the one or more grants and the UE data are received. Additionally, the apparatus and methods transmit the feedback indication to the network entity on a resource determined according to the feedback rule and based on whether the one or more grants and the UE data are received.
Abstract:
Techniques for handover procedure management are described herein. An example method may include monitoring, at a target base station, reference signal information associated with a UE based on a reference signal configuration of the UE received by the target base station from a source base station. Additionally, the example method may include estimating, at the target base station, timing information for the UE based on the reference signal information. Further, the example method may include transmitting, by the target base station, the timing information to the source base station, where the source base station provides the timing information to the UE for handover to the target base station.
Abstract:
An example data structure for managing user equipment communications in a wireless communications system is presented, as well as methods and apparatuses configured to implement the data structure. For instance, the data structure may include a downlink subframe comprising two slots and including one or more quick downlink channels having a single-slot transmission time interval. In addition, the example data structure may include one or more resource element blocks each comprising one or more resource elements into which a frequency bandwidth is divided within one or both of the two slots, wherein each of the one or more resource element blocks comprises a control channel region or a data channel region. Furthermore, the example data structure may include one or more resource grants, located within one or more control channel regions, for one or more user equipment served by the one or more quick downlink channels.
Abstract:
A data structure for managing user equipment communications in a wireless communication system is presented. In some examples, the data structure may include one or more resource element blocks into which a frequency bandwidth of a downlink channel is divided within a symbol that defines a transmission time interval in a downlink subframe. Furthermore, the data structure may include a control region and a data region within at least one resource element block of the one or more resource element blocks. Additionally, the data structure may include a downlink resource grant, located within the control region, for a user equipment served by the downlink channel. In an additional aspect, a network entity and method for generating the example data structure are provided.
Abstract:
Certain aspects of the present disclosure generally relate to techniques for secure connectionless uplink transmissions by a wireless device. Such techniques may provide for negotiation of an encryption mechanism as part of the setup for connectionless transmissions and subsequent secure connectionless uplink transmissions.
Abstract:
A method of wireless communication is provided which includes receiving, at a first user equipment (UE), a first reference signal on a first set of resource elements of a first enhanced physical downlink control channel (EPDCCH). The first reference signal is mapped to a same set of antenna ports that are mapped to a second reference signal transmitted on a second set of resource elements of a second EPDCCH to at least a second UE. Furthermore, the first set of resource elements and the second set of resource elements have been selected from shared resource elements. The first set of resource elements differ from the second set of resource elements. The method also includes descrambling the received first reference signal based at least in part on a cell identification (ID) and demodulating a signal based at least in part on the descrambled first reference signal.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. In an aspect, the apparatus may configure at least a first resource set and a second resource set for a control channel. The first and second resource sets may be configured with a common reference signal configuration. The apparatus also configures first rate-matching parameters for the first resource set and second rate-matching parameters for the second resource set. Then, the apparatus transmits the first rate-matching parameters and the second rate-matching parameters and transmits the control channel using the first resource set and the second resource set.