Abstract:
A lead-acid battery according to the invention contains an electrode grid structure that comprises dispersoid-containing lead having relatively high strength and good corrosion resistance. The dispersoid particles exemplarily are selected from the oxides, nitrides and carbides that are substantially insoluble in lead and in sulfuric acid of concentration suitable for use in a lead-acid battery. Significantly, the dispersoid-containing lead has average grain size of at least 20 .mu.m. In consequence of the relatively large grain size, the total length of grain boundaries exposed to electrolyte is relatively small, and corrosion resistance is improved. Exemplary techniques for forming the dispersoid-containing lead are disclosed.
Abstract:
In accordance with the invention, an electronic device having one or more contact pads is placed in contact with a carrier sheet bearing an array of transferable solder particles. Heat is applied to adhere the solder to the contact pads, and solder is selectively transferred onto the contact pads. In a preferred embodiment the solder-carrying medium comprises elastomeric material and the solder particles comprise solder-coated magnetic particles. Application of a magnetic field while the elastomer is curing produces a regular array of solder coated particles. Using this method, devices having smaller than conventional contact structures can be readily interconnected.
Abstract:
The present invention provides a position-sensing system which employs sensors incorporating magnetoresistive materials. The position of a magnetic information input member is determined through the resistance change of the magnetoresistive sensor in response to the magnetic field from the magnetic information input member. Exemplary magnetoresistive materials are lanthanum manganites having high magnetoresistive ratios. Two-dimensional position sensing systems for graphics tablets are also described.
Abstract:
In accordance with the invention, a field emission device is made by disposing emitter material on an insulating substrate, applying masking particles to the emitter material, applying an insulating film and a gate conductor film over the masking particles and emitter material and removing the particles to reveal a random distribution of apertures to the emitter material. The result is a novel and economical field emission device having numerous randomly distributed emission apertures which can be used to make low cost flat panel displays.
Abstract:
The present invention provides improved techniques for metallizing ceramic substrates. The method comprises providing a ceramic substrate and depositing a layer of reducible material on the ceramic substrate. The layer of reducible material includes a reducible ceramic such as copper oxide. The ceramic substrate having the layer of reducible material disposed thereon is heated and the reducible material is contacted with a reducing agent to create a conductive region. The conductive region is either a metallized region formed by reduction, or it is a conductive ceramic formed through surface reduction. The present invention further provides a metallized ceramic substrate. The metallized layer comprises ceramic regions having at least one constituent in common with the ceramic substrate. The ceramic substrate and the ceramic regions of the metallized layer are sintered to each other such that the metallized region is interspersed between the sintered ceramic regions. In this fashion, the metal is firmly held to the ceramic substrate due to the presence of the bonded ceramic within the metallized layer.
Abstract:
According to the present invention, an article of manufacture is provided having at least one region which includes a lead-free solder composition. The lead-free solder composition comprises an alloy of at least 50 wt. % tin and 7-30 wt. % zinc. An effective amount of silver is added to increase the ductility of the resultant alloy at least 25% over the ductility of the binary eutectic tin-zinc alloy. In a further embodiment, the present invention provides alloys useful in articles comprising lead-free solder compositions. The alloys include at least (8.0+y) wt. % zinc, 0.25 y to 0.5 y wt. % silver and at least 50 wt. % tin where y is from 0.2 to 22.
Abstract:
In accordance with the invention, a field emission device is provided with an improved pillar structure comprising multi-layer pillars. The pillars have a geometric structure that traps most secondary electrons and an exposed surface that reduces the number of secondary electrons. Processing and assembly methods permit low-cost manufacturing of high breakdown-voltage devices, including flat panel displays.
Abstract:
In accordance with the invention, a field emission device is made by disposing emitter material on an insulating substrate, applying a sacrificial film to the emitter material and forming over the sacrificial layer a conductive gate layer having a random distribution of apertures therein. In the preferred process, the gate is formed by applying masking particles to the sacrificial film, applying a conductive film over the masking particles and the sacrificial film and then removing the masking particles to reveal a random distribution of apertures. The sacrificial film is then removed. The apertures then extend to the emitter material. In a preferred embodiment, the sacrificial film contains dielectric spacer particles which remain after the film is removed to separate the emitter from the gate. The result is a novel and economical field emission device having numerous randomly distributed emission apertures which can be used to make low cost flat panel displays.
Abstract:
The method of shaping a polycrystalline diamond (PCD) body (exemplarily a wafer of CVD-PCD) utilizes our discovery that the rate and amount of diamond removal from a given region of a PCD body depends, for a given metal "etchant" at a given temperature, on the thickness of the etchant layer overlying the given region, with relatively larger etchant thickness being associated with relatively higher removal rate and amount. Exemplarily, the method can be used to substantially remove thickness variations and/or film curvature from as-produced PCD films. An exemplary metal that can be used in the practice of the invention is mischmetal. The metal etchant can be molten, partially molten or solid.
Abstract:
A portion of a surface of a sample body is arranged to receive an incident optical beam having an optical intensity I.sub.0. On an opposing surface of the sample body is located an optical detector which senses the intensity I of the resulting optical radiation emerging from the opposing surface of the sample body. In order to measure the thickness t of the sample body, a thickness gauge is located either at another portion of the surface of the sample body or on the optical detector.