Abstract:
The present invention related to a 5G or pre-5G communication system to be provided to support a higher data transmission rate since 4G communication systems like LTE. The present invention relates to a method and an apparatus for encoding a channel in a communication or broadcasting system supporting parity-check matrices having various sizes are provided. The method for encoding a channel includes determining a block size of the parity-check matrix; reading a sequence for generating the parity-check matrix, and transforming the sequence by applying a previously defined operation to the sequence based on the determined block size.
Abstract:
A communication method and system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for internet of things (IoT) are provided. The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The method and apparatus for polar encoding and rate-matching are disclosed.
Abstract:
A method and an apparatus are provided for receiving signaling information in a digital broadcasting system. The method includes receiving a frame including a first coded block, a second coded block, and at least one physical layer pipe (PLP) data; decoding the first coded block to identify first signaling information for a physical layer; and decoding the second coded block to identify second signaling information. The first signaling information has a fixed number of bits. The second signaling information has a variable number of bits. The first signaling information includes information indicating a forward error correction (FEC) type of the second signaling information for receiving the second signaling information. The second signaling information includes information indicating a modulation scheme used for related PLP data.
Abstract:
An encoding method for encoding input information bits using an encoder implemented with concatenation of a CRC-α coder and a polar coder is provided. The method includes performing Cyclic Redundancy Check (CRC) coding on as many information bits as a determined number of CRC coding bits among input information bits and performing polar coding on the CRC-coded information bits and other information bits than the CRC-coded information bits.
Abstract:
A method and an apparatus are provided for transmitting and receiving signaling information in a digital broadcasting system. The method includes encoding first signaling information for a physical layer to generate a first coded block; encoding second signaling information to generate a second coded block; and transmitting a frame including the first coded block, the second coded block, and at least one physical layer pipe (PLP) data. The first signaling information has a fixed number of bits, and the second signaling information has a variable number of bits. The first signaling information includes information indicating a forward error correction (FEC) type of the second signaling information for receiving the second information, and the second signaling information includes information indicating a modulation scheme used for a related PLP data.
Abstract:
A method and apparatus for decoding received packets in a broadcasting and communication system is provided. The method includes reconstructing a source block by arranging source packets received from a sender on a two-dimensional array having a width of a given symbol size, and determining at least one Erased Subdivided Encoding Symbol Index (E-SESI) corresponding to at least one source packet which is not successfully received in the reconstructed source block, determining a symbol unit for Forward Error Correction (FEC) decoding based on the at least one E-SESI, and performing FEC decoding on the reconstructed source block depending on the determined symbol unit.
Abstract:
A method of decoding a non-binary Low Density Parity Check (LDPC) code is provided. The method includes a plurality of messages to perform hard decision for all messages except for one message, and combines the hard-decided values with the one message that is not hard-decided, to update a final output message.
Abstract:
A method for bit-interleaving coded bits for Incremental Redundancy (IR) transmission in a transmission apparatus of a digital video broadcasting system is provided. The method includes sequentially writing the coded bits in a memory area having a predetermined size, reading the coded bits written in the memory area based on a reading order that is differently set for each of normal transmission and at least one IR transmission, and outputting one coded systematic bit stream interleaved for the normal transmission and at least one coded parity bit stream interleaved for at least one IR transmission.
Abstract:
A method for transmitting a signal in broadcasting and communication systems is provided. The method includes dividing source data into two or more streams and respectively coding the two or more streams through coders, selecting two or more symbols from among coded codeword symbols, mapping the selected two or more symbols to one signal constellation for modulation, and transmitting a modulated signal, in which the codeword symbols include one or more non-binary codewords, and a product of orders of finite fields on which the codeword symbols are defined is equal to an order of the signal constellation.
Abstract:
A method and apparatus are provided for recovering data efficiently even when data loss has occurred over a channel or network. The packet transmission method includes arranging a first transmission packet in a source symbol in a first region of a source block; arranging a second transmission packet in a space starting with an empty space of a last source symbol where the first transmission packet is arranged, remaining after arranging the first transmission packet; arranging information related to the second transmission packet in a second region of the source block; performing Forward Error Correction (FEC) encoding on the source block; and transmitting the encoded source block.