Abstract:
A method and apparatus are provided for transmitting uplink signals including feedback for use in scheduling at different evolved Node Bs (eNBs) without intermodulation interference, especially in cases where the User Equipment (UE) is connected to an inter-duplex inter-eNB system in which the cooperation between eNBs is very slow or non-existent.
Abstract:
A method and apparatus for providing a data service by using a broadcasting signal are provided. To transmit the broadcasting signal by an Access Point (AP) located within a coverage area of a base station (eNB), the AP transmits configuration information, used for transmission of the broadcasting signal on the same frequency band as that of the eNB, to the eNB, receives broadcasting signal transmission information, based on the configuration information, from the eNB, and transmits the broadcasting signal according to the broadcasting signal transmission information.
Abstract:
Methods and apparatus are provided for controlling transition of an operation state of a cell in a wireless communication system. The cell includes a transceiver configured to transmit and receive signals to and from a terminal and another cell. The cell also includes a controller configured to transition an operation state of the cell from an active state to a dormant state, transmit a discovery signal, determine whether a cell activation signal is received from a node that controls the cell, and transition the operation state of the cell from the dormant state to the active state when the cell activation signal is received.
Abstract:
Disclosed is a method by a terminal in a communication system, including attempting to acquire synchronization information from a cell, attempting to acquire synchronization information from another terminal, if the synchronization information from the cell is not acquired, and acquiring synchronization information by the terminal, if the synchronization information from the another terminal is not acquired.
Abstract:
A method for transmitting a physical channel in a Time Division Duplex (TDD) communication system capable of carrier aggregation is provided for supporting aggregation of carriers having different TDD configurations. The communication method of a terminal in a TDD radio communication system accomplishing broadband through carrier aggregation of primary and secondary cells, of which aggregated carriers have different TDD Uplink-Downlink (UL-DL) configurations, includes receiving Physical Downlink Shared Channel (PDSCH) through the secondary cell, and transmitting acknowledgement information corresponding to the PDSCH to a base station, where acknowledgement information is transmitted on a Physical Uplink Control CHannel (PUCCH) of the primary cell.
Abstract:
Reliable detection of the configuration of transmit antennas includes obtaining a data for transmission, encoding the data, and modulating the data. During the modulating of the data, the data may be configured in such a way as to convey the configuration of the antennas through the modulation of the data. An antenna configuration is obtained by obtaining a representation of the antenna configuration, and masking the data with an error correcting code, where the mask corresponds to the antenna configuration.
Abstract:
An apparatus and a method of measuring a reference signal for efficient downlink transmission in a mobile communication system are provided. The system includes plural base stations, each having a plurality of antennas distributed in the service area thereof based on a Distributed Antenna System (DAS). A method for a base station to notify a terminal of reference signal measurement information in a mobile communication system comprises determining whether the terminal is in a Rank Indicator/Precoding Matrix Indicator (RI/PMI) disabled mode, selecting, when the terminal is in the RI/PMI disabled mode, the reference signal to be measured by the terminal between a Cell-specific Reference Signal (CRS) and a Channel Status Information Reference Signal (CSI-RS), notifying the terminal of the reference signal measurement information with the selection result, and receiving channel information generated based on the reference signal measurement information from the terminal.
Abstract translation:提供了一种在移动通信系统中测量用于有效下行链路传输的参考信号的装置和方法。 该系统包括多个基站,每个基站具有基于分布式天线系统(DAS)分布在其服务区域中的多个天线。 一种用于基站在移动通信系统中通知终端参考信号测量信息的方法,包括:确定终端是否处于秩指示/预编码矩阵指示符(RI / PMI)禁用模式,当终端处于 RI / PMI禁用模式,由小区特定参考信号(CRS)和信道状态信息参考信号(CSI-RS)之间的终端要测量的参考信号,通过选择通知终端参考信号测量信息 结果以及基于来自终端的参考信号测量信息生成的信道信息。
Abstract:
Methods and apparatuses for generating a channel sounding reference signal in a wireless communication system are discussed. In one aspect, a method is provided for User Equipment (UE) in a wireless communication system to transmit a channel Sounding Reference Signal (SRS). The method includes receiving a control channel for uplink data channel transmission from a Base Station (BS); determining whether the control channel includes information for aperiodic channel SRS transmission; and when it is determined that the control channel includes information for aperiodic channel SRS transmission: transmitting uplink data through a first carrier; and transmitting the channel SRS through a second carrier; wherein the first carrier and the second carrier are transmitted simultaneously to the BS.
Abstract:
A method for canceling interference between multiple terminals scheduled on the same time/frequency resource for communication between a terminal and a base station using a plurality of antennas. The interference cancellation method includes receiving, at a terminal, control channel information from a base station, determining other base station information and other terminal information based on the received control channel information, receiving a data channel from the base station, and cancelling interference to the data channel based on the other base station information and other terminal information. The terminal is capable of mitigating interference caused by the signals transmitted to other terminals using the least information even with legacy terminal receivers having no interference cancellation capability.
Abstract:
An apparatus includes a processor, and a transceiver operatively coupled to the processor. The transceiver is configured to split a set of modulated data symbols, based on a phase change between N consecutive modulated data symbols, to produce Q sets of data symbols, and generate, based on the Q sets of data symbols, Q sets of DFT spread data symbols. The transceiver is further configured to frequency domain spectrum shaping (FDSS) filter each set of the Q sets of DFT spread data symbols, via a different FDSS filter, to produce Q sets of FDSS filtered data symbols, and combine the Q sets of FDSS filtered data symbols. The transceiver is further configured to perform an inverse fast Fourier transform (IFFT) operation on the combined Q sets of FDSS filtered data symbols to produce a FDSS discrete Fourier transform-spread-orthogonal frequency division multiplexing (DFT-s-OFDM) signal, and transmit the FDSS-DFT-s-OFDM signal.