Abstract:
Aspects described herein relate to reporting user equipment (UE) activity period statistics. Statistics for a UE regarding a time the UE is in a connected mode or idle mode during one or more activity periods can be determined. From the statistics for the UE, it can also be determined whether the time the UE is in the connected mode in the one or more activity periods is less than a threshold. At least a portion of the statistics for the UE can be provided to an access network node where the time the UE is in the connected mode in a corresponding portion of the one or more activity periods is less than the threshold.
Abstract:
Distributed computing is disclosed in which a client device accesses a service announcement for a broadcast service in order to retrieve transport parameters describing a data transmission service. The client device obtains a refresh rate from the service description file, which is separate from the data transmission service, wherein the refresh rate relates to a frequency at which the data transmission service updates data in a data transmission provided by the data transmission service. The client device uses the transport parameters to access the data transmission to receive the data. Once the data is received, the client device will delay any subsequent access to the data transmission to get updated data for a delay time based at least in part on the refresh rate.
Abstract:
Methods, systems, and devices are described for evolved multimedia broadcast multicast service (eMBMS) utilizing enhanced component carriers (eCCs). A wireless system may send unicast data using resources allocated for multicast transmissions (e.g., eMBMS transmissions). The presence of unicast data in a transmission time interval (TTI) scheduled for multicast transmission may be indicated by a control region within the TTI. A UE may monitor the control region to identify the presence of unicast information. A TTI scheduled for multicast transmission may also include reference signals to aid in the demodulation of multicast or unicast data. In some cases, the reference signals may be front-loaded at the beginning or embedded within the TTI. The embedded reference signals may be configured based on the type of data carried by the TTI scheduled for multicast transmission, or by length of the cyclic prefix used by the TTI scheduled for multicast transmission.
Abstract:
Techniques are described for wireless communication. A first method may include determining a pattern of signal transmissions for transmitting instances of a signal in a time period of an unlicensed radio frequency spectrum band; determining whether the unlicensed radio frequency spectrum band is unavailable to transmit at least one instance of the signal; and changing, in response to determining the unlicensed radio frequency spectrum band is unavailable to transmit an instance of the signal, the pattern of signal transmissions for the time period. A second method may include identifying at least one reference signal pattern from a plurality of reference signal patterns based at least in part on whether a plurality of transmission time intervals are bundled; and signaling the identified at least one reference signal pattern to a device.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE. The UE receiving information indicating an available MBMS service, a non-self-standing carrier frequency on which the available MBMS service is provided, and one or more PCC frequencies to which the non-self-standing carrier frequency is attached. The UE selects a preference for one PCC frequency of the one or more PCC frequencies in order to obtain information for receiving the available MBMS service on the non-self-standing carrier frequency. The UE receives the available MBMS service on the non-self-standing carrier frequency based on the obtained information.
Abstract:
Techniques are described for wireless communication. A first method includes performing a clear channel assessment (CCA) for a first node associated with a first operator in a deployment of operators over an unlicensed radio frequency spectrum band, and transmitting data over the unlicensed radio frequency spectrum band when the CCA is successful. The data may be transmitted by the first node in accordance with an agreement between the first operator and a second operator in the deployment of operators. A second method includes receiving over an unlicensed radio frequency spectrum band, at a user equipment (UE), a first transmission from a first node associated with a first operator in a deployment of operators. The first transmission may include data originating from a second operator in the deployment of operators.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives a request to receive a Multimedia Broadcast Multicast Service (MBMS) service associated with a service area identity (SAI) and a second frequency. The apparatus performs inter-frequency cell reselection from a first cell transmitting at a first frequency to a second cell transmitting at the second frequency, the second cell being an inter-frequency neighbor cell to the first cell. The apparatus receives system information from the second cell. The apparatus determines that the second cell transmitting at the second frequency is unassociated with the SAI based on the received system information. The apparatus blacklists the SAI on the second frequency in a blacklist for at least a period of time upon determining that the second cell is unassociated with the SAI.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE. The UE receives system information including a trigger message and additional information. In addition, the UE enables an application and provides the additional information to the application based on the trigger message. The additional information may include location information. The UE may display map-related information associated with the location information. The UE may receive previous system information prior to receiving the system information. The previous system information may include an alert message, and the location information may be associated with the alert message. The previous system information may include an MID within a predetermined set of MIDs. The system information may include an MID different from the predetermined set of MIDs. The map-related information may indicate a geographic area associated with the location information in the system information.
Abstract:
Various embodiments provide methods and apparatus for network-controlled DRVCC. In an embodiment method, a wireless user equipment may include requesting handover of a voice over Internet protocol (VoIP) call from a first network to a second network, activating a second radio, continuing the voice call on the circuit switched (CS) domain of the second network, and communicating data for applications other than the voice call via the first network. An embodiment method may include determining whether the first network supports voice-over-LTE (VoLTE) calls, and deactivating a radio in response to determining that the first network supports VoLTE calls. An embodiment method may include determining whether a quality of the VoIP call satisfies a quality threshold, deactivating the radio continued to the second network when the quality of the VoIP call satisfies the quality threshold, and activating the second radio when the VoIP call quality does not satisfy the quality threshold.
Abstract:
Methods, systems, and devices are described for evolved multimedia broadcast multicast service (eMBMS) utilizing enhanced component carriers (eCCs). A wireless system may send unicast data using resources allocated for multicast transmissions (e.g., eMBMS transmissions). The presence of unicast data in a transmission time interval (TTI) scheduled for multicast transmission may be indicated by a control region within the TTI. A UE may monitor the control region to identify the presence of unicast information. A TTI scheduled for multicast transmission may also include reference signals to aid in the demodulation of multicast or unicast data. In some cases, the reference signals may be front-loaded at the beginning or embedded within the TTI. The embedded reference signals may be configured based on the type of data carried by the TTI scheduled for multicast transmission, or by length of the cyclic prefix used by the TTI scheduled for multicast transmission.