Abstract:
A method for manufacturing chip stack packages may include: providing at least two wafers, each wafer having a plurality of chips, and scribe lanes formed between and separating adjacent chips; forming a plurality of via holes in peripheral portions of the scribe lanes; forming connection vias by filling the via holes; establishing electrical connections between the chip pads and corresponding connection vias; removing material from the back sides of the wafers to form thinned wafers; separating the thinned wafers into individual chips by removing a central portion of each scribe lane; attaching a first plurality of individual chips to a test wafer; attaching a second plurality of individual chips to the first plurality of individual chips to form a plurality of chip stack structures; encapsulating the plurality of chip stack structures; and separating the plurality of chip stack structures to form individual chip stack packages.
Abstract:
The present invention is directed to flux compositions and uses thereof. One composition comprises an activator, a medium-viscosity solvent being a polymer, and a high-viscosity solvent being a copolymer containing first monomers and second monomers. Another composition comprises an activator, and a high-viscosity solvent comprising a copolymer containing first monomers and second monomers. Another composition comprises an activator of 6-12 percent by weight of glutaric acid, pimelic acid, tartaric acid, or mixtures thereof, and a medium-viscosity solvent of 88-94 percent by weight comprising a polymer with hydroxyl end groups. Another composition comprises an activator in a liquid state comprising poly(ethylene glycol)-diacid, and a medium-viscosity solvent comprising a polymer with hydroxyl end groups. A soldering method for joining objects is also provided, comprising the steps of applying a flux composition to at least a portion of one or more of the objects, and joining the objects.
Abstract:
A method for manufacturing chip stack packages may include: providing at least two wafers, each wafer having a plurality of chips, and scribe lanes formed between and separating adjacent chips; forming a plurality of via holes in peripheral portions of the scribe lanes; forming connection vias by filling the via holes; establishing electrical connections between the chip pads and corresponding connection vias; removing material from the back sides of the wafers to form thinned wafers; separating the thinned wafers into individual chips by removing a central portion of each scribe lane; attaching a first plurality of individual chips to a test wafer; attaching a second plurality of individual chips to the first plurality of individual chips to form a plurality of chip stack structures; encapsulating the plurality of chip stack structures; and separating the plurality of chip stack structures to form individual chip stack packages.
Abstract:
A method for manufacturing chip stack packages may include: providing at least two wafers, each wafer having a plurality of chips, and scribe lanes formed between and separating adjacent chips; forming a plurality of via holes in peripheral portions of the scribe lanes; forming connection vias by filling the via holes; establishing electrical connections between the chip pads and corresponding connection vias; removing material from the back sides of the wafers to form thinned wafers; separating the thinned wafers into individual chips by removing a central portion of each scribe lane; attaching a first plurality of individual chips to a test wafer; attaching a second plurality of individual chips to the first plurality of individual chips to form a plurality of chip stack structures; encapsulating the plurality of chip stack structures; and separating the plurality of chip stack structures to form individual chip stack packages.
Abstract:
Methods of forming an integrated circuit device include forming an interlayer dielectric layer on a first surface of a semiconductor substrate and then forming an interconnect hole that extends through the interlayer dielectric layer and into the semiconductor substrate. A first sidewall spacer layer is formed on a sidewall of the interconnect hole. The semiconductor substrate at a bottom of the interconnect hole is isotropically etched to define an undercut recess in the semiconductor substrate. This etching step is performed using the first sidewall spacer layer as an etching mask. The interconnect hole and the uncut recess are then filled with a through-via electrode. A second surface of the semiconductor substrate is removed for a sufficient duration to expose the uncut recess containing the through-via electrode.
Abstract:
A system-in-package, comprising a wafer level stack structure, including at least one first device chip including a first device region having a plurality of input/output(I/O) pads, and at least one second device chip including a second device region having a plurality of input/output(I/O) pads and a second peripheral region surrounding the second device region, wherein the size of the second device region is different from the size of the first device region, wherein the at least one first device chip and the at least one second device chip have approximately equal size; and a common circuit board to which the wafer level stack structure is connected.
Abstract:
A method of removing and/or reducing undesirable contaminants removes residues including graphitic layers, fluorinate layers, calcium sulfate (CaSO4) particles, tin oxides and organotin, from a chip passivation layer surface. The method uses a plasma process with an argon and oxygen mixture with optimized plasma parameters to remove both the graphitic and fluorinated layers and to reduce the level of the inorganic/tin oxides/organotin residue from an integrated circuit wafer while keeping the re-deposition of metallic compounds is negligible. This invention discloses the plasma processes that organics are not re-deposited from polymers to solder ball surfaces and tin oxide thickness does not increase on solder balls. The ratio of argon/oxygen is from about 50% to about 99% Ar and about 1% to about 50% O2 by volume. Incoming wafers, after treatment, are then diced to form individual chips that are employed to produce flip chip plastic ball grid array packages.
Abstract:
The invention relates to a composition of matter comprising a soldering flux, wherein the flux consists essentially of a combination of a fluxing agent and a solvent, and wherein the fluxing agent comprises a keto acid such as levulinic acid or acetylbutyric acid. The flux may also comprises an ester acid, or comprises a mixture of the keto acid with the ester acid. The solvent comprises a mixture of a tacky solvent with a non-tacky solvent. The invention also relates to a process comprising soldering at least two surfaces together, each of which comprises a metal area to which solder can adhere by employing the following steps in any order: applying solder to at least one of the metal areas, aligning the metal areas so that they are superimposed over one another, heating at least one of the areas to a temperature that comprises at least the melting temperature of the solder. The last step comprises joining the superimposed areas to one another. The process employs the flux composition operatively associated with the solder, and in one embodiment the invention comprises a mixture of the flux composition with powdered solder. In another embodiment, the process comprises IMS, C4 and C4NP processes and the solder comprises a lead free solder. The invention also comprises a product produced by the foregoing process or processes.
Abstract:
The present invention is directed to soldering techniques and compositions for use therein. In one aspect, a flux composition is provided. The flux composition comprises a fluxing agent comprising organic acid, an organic tacking agent and an organic wetting agent. In another aspect, a soldering method for joining objects is provided comprising the following steps. A flux composition and a solder compound are applied to at least a portion of one or more of the objects. The flux composition comprises a fluxing agent comprising organic acid, an organic tacking agent and an organic wetting agent. The objects are then joined.
Abstract:
An image sensor device including a protective plate may be manufactured from an image sensor chip having an active surface and a back surface opposite to the active surface. The image sensor chip may include chip pads formed in a peripheral region of the active surface, a microlens formed in a central region of the active surface and an intermediate region between the peripheral and central regions. A protective plate may be attached to the intermediate region of the active surface of the image sensor chip using an adhesive pattern that is sized and configured to maintain a separation distance between the protective plate and the microlens formed on the image sensor chip. Conductive plugs, formed before, during or after the manufacture of the image sensor chip circuitry may provide electrical connection between the chip pads and external connectors.