Abstract:
A solid oxidized glutathione salt is produced by heating an oxidized glutathione at 30° C. or higher while the oxidized glutathione is brought into contact with an aqueous medium in the presence of a substance for providing a cation, to produce the salt of the oxidized glutathione and the cation as a solid, wherein the aqueous medium is composed of water and/or a water-soluble medium, and the cation is at least one selected from an ammonium cation, a calcium cation and a magnesium cation.
Abstract:
A combined Direct Coal Liquefaction (DCL)/Fischer Tropsch (F-T) process and system for producing high Cetane diesel fuel by converting at least 70% of the feed coal by DCL operating at 50 to 70% conversion and gasifying the bottoms and between 0 and 30% of the feed coal to produce H2 for supply to the DCL and to upgrading and syngas for being converted to diesel by F-T. Diesel blendstocks produced by the DCL and the F-T in a ratio of 3 to 1 to 14 to 1 are blended to produce diesel fuel having a Cetane Number of at least 51 and a specific gravity of 0.845 or less.
Abstract:
This invention is directed to systems, devices and methods for treating organic-containing sludges and converting such sludges to high value fertilizers containing both inorganic and organic fertilizer components, which creates an inorganically-augmented bioorganic fertilizer. The invention describes methods to create a thixotropic or paste-like material via the application of mixing energy to the organic sludge followed by an alkaline treatment and a subsequent ammoniation. The invention further describes a method to increase the plant nutrient content in the organic containing product to a level which permits the finished granular fertilizer product to compete in the commercial agricultural fertilizer marketplace. Further, the invention reduces odors associated with said organic-containing sludges.
Abstract:
The present invention provides a cultivation medium characterized in that it is made by defibration of a bark-based composition comprising at least 70% by volume of bark, said cultivation medium having water availability that is greater than or equal to 250 mL/L.
Abstract:
A waste fluid is evaluated to determine if the waste fluid includes fracturing fluid requiring treatment for sodium; a hydrocarbon level requiring hydrocarbon treatment; and/or drilling fluid requiring clay treatment. The waste fluid is mixed with mature compost, organic fertilizer, and top from the well site. If the waste fluid requires treatment for sodium, calcium nitrate is mixed with the waste fluid in an amount sufficient to balance the sodium content thereof. If the waste fluid includes a hydrocarbon level requiring hydrocarbon treatment, an additional organic fertilizer is mixed with the waste fluid along with hydrocarbon-digesting microbes in an amount sufficient to inoculate the waste fluid. If the waste fluid includes drilling fluid requiring clay treatment, the waste fluid is mixed with gypsum to break up and reduce adhesive characteristics of clay particles present in the waste fluid. The mixture is stirred and dried to produce fertile top soil.
Abstract:
Soil amendment/foliar nutrient compositions and methods for their manufacture and use are provided. The compositions are aqueous compositions that include a carbon skeleton energy component (CSE); a macronutrient; a vitamin cofactor; a complexing agent; and at least one of exotic micronutrient component and an ionophore component.
Abstract:
A particlized biotic soil amendment product for preparing a damaged or degraded soil ecosystem to establish a self-sustaining floral/vegetative rhizosphere contains a mixture of inorganic “mineral” material, organic material, charcoal, and small amounts of inoculants to promote the growth of beneficial microorganisms including mycorrhizal fungi and nitrogen-fixing bacteria. These ingredients are prilled to form roughly uniform, spherical, ovoid, capsular or other-shaped particles suitable for handling with prior-art agricultural machines. The prilling should produce particles that are resilient enough to survive standard shipping, handling and application procedures, but thereafter break down under irrigation and weathering so as to release their ingredients for use by plants in the vicinity.
Abstract:
Organic fertilizer is produced through composting natural lignocellulose material and liquid wastes especially from livestock production, which has a content of minimum 35% dry matter, minimum 25 weight % of organic material, minimum 20 weight % of humus and minimum 1.5 weight % of nitrogen. The organic fertilizer is produced by spraying sorbent material with waste water, that is livestock waste water or food industry waste water or water cleaning plant sludges. The waste water contains a minimum of 20% weight of livestock waste water, which is homogenized with agent, which includes materials based on starch derivates or cellulose derivates, which increase thixotrophy and surface tension of this waste water and separators, which prevent creation of clusters and increase solubility of starch or cellulose derivates. Sorbent material with waste water is mixed, aerated and decomposed by aerobic bacterial activity in at least four cycles.
Abstract:
A controlled-release fertilizer comprising fertilizer particles encapsulated in a biodegradable polyurethane obtained from a reaction between a polyisocyanate and an isocyanate-reactive component, which is formed by a polyol and a methyl ester derivative of a natural oil, in the presence of an amine catalyst.
Abstract:
A waste fluid is evaluated to determine if the waste fluid includes fracturing fluid requiring treatment for sodium; a hydrocarbon level requiring hydrocarbon treatment; and/or drilling fluid requiring clay treatment. The waste fluid is mixed with mature compost, organic fertilizer, and top from the well site. If the waste fluid requires treatment for sodium, calcium nitrate is mixed with the waste fluid in an amount sufficient to balance the sodium content thereof. If the waste fluid includes a hydrocarbon level requiring hydrocarbon treatment, an additional organic fertilizer is mixed with the waste fluid along with hydrocarbon-digesting microbes in an amount sufficient to inoculate the waste fluid. If the waste fluid includes drilling fluid requiring clay treatment, the waste fluid is mixed with gypsum to break up and reduce adhesive characteristics of clay particles present in the waste fluid. The mixture is stirred and dried to produce fertile top soil.