Abstract:
A method and apparatus are provided for combining pilot symbols and Transmit Parameter Signalling (TPS) channels within an OFDM frame. The method uses Differential Space-Time Block Coding to encode a fast signalling message at an OFDM transmitter. At an OFDM receiver, the encoded fast signalling message can be decoded using differential feedback to recover information about the channel responses that would normally be carried by pilot symbols. In wireless data transmission employing adaptive modulation and coding, an instantaneous channel quality measurement, independent of the origin of interference for example, neighboring-cell interference, white thermal noise, or residual Doppler shift is provided. Using the correlation between a signal which has been symbol de-mapped, and one which has also been soft decoded and re-encoded, a channel quality indicator is produced. Another embodiment uses TPS data as pilot symbols by decoding TPS and then re-encoding.
Abstract:
Improvements to a layered modulation (LM) implementation are disclosed. The present invention discloses two implementations of LM, using single and multiple transponders per signal frequency, respectively. Layered hierarchical 8PSK (H-8PSK) is a special case of LM. By re-encoding the high-priority (HP) portion of an H-8PSK signal, LM can improve carrier-to-noise ratio (CNR) of a H-8PSK signal. LM can be computer-simulated and a two-layered signal can be sequentially demodulated with a predicted CNR performance. An LM signal can be simulated using live signals for off-line processing. In addition, a signal processing apparatus can process in real time LM signals emulated from live satellite signals.
Abstract:
Techniques to adjust the setpoint of a power control loop in a wireless communication system. The setpoint may be adjusted based on frame status indicative of erased/good decoded frames, one or more (typically soft) metrics indicative of the confidence in the decoded results, power surplus/deficit indicative of the difference between the received signal quality and the setpoint, setpoint surplus/deficit indicative of the difference between the setpoint and a threshold Eb/Nt needed for the desired level of performance, or a combination thereof. The metrics may include re-encoded symbol error rate, re-encoded power metric, modified Yamamoto metric, minimum or average LLR among decoded bits, number of decoding iterations, and possibly others. The setpoint may be adjusted in different manners and/or by different amounts depending on the above-noted factors. The techniques may be employed for forward and/or reverse links in CDMA systems.
Abstract:
A method for sending an acknowledgment message in a wireless communication system is disclosed. A first signal is received before receiving a second signal from a transmitter. Decoded first data is extracted from the first signal. A third signal is produced by encoding and modulating the decoded first data. The second signal is demodulated to produce second symbols. The third signal and the second symbols are correlated.
Abstract:
Methods and apparatus are disclosed for detecting a control channel message transmitted on one of a plurality of shared control channels and targeted to a wireless receiver. In an exemplary method, messages transmitted over a plurality of shared control channels are decoded, and at least one likelihood metric is determined for each of the decoded messages. A best candidate is selected from the decoded messages, based on the likelihood metrics, and the at least one likelihood metric for the best candidate is compared to corresponding likelihood metrics for the messages other than the best candidate to determine whether the best candidate is a valid message. Wireless communication receivers configured correspondingly are also disclosed.
Abstract:
An apparatus with a first information decoder (103) and an information encoder (104) operates in at least one of a lossless and a lossy encoding modes to re-encode original information decoded by the first information decoder (103). A transmitter (105) is coupled to the information encoder (104) and to at least one receiver (112) which is coupled to a second information decoder (113). The second information decoder (113) operates in the at least one of the lossless and the lossy decoding modes to recover information substantially representing content associated with the original information.
Abstract:
A method and receiver systems for demodulating and decoding a hierarchically modulated signal, e.g. an 8 PSK signal, are disclosed. An exemplary method includes demodulating and processing (502) the hierarchically modulated signal (202) to produce symbols (212) from the first modulation at the first hierarchical level, applying information (504) from a plurality of the symbols from the first modulation at the first hierarchical level in subtracting (214) from the demodulated hierarchically modulated signal to obtain the second modulation at the second hierarchical level and processing (506) the second modulation at the second hierarchical level to produce second symbols (222) from the demodulated second signal. The hierarchically modulated signal comprises a non-uniform 8 PSK signal. Applying the information from the plurality of the symbols from the first modulation can be achieved by applying the symbols after error correction. A decision-directed demodulation of the first modulation can also be used to further improve performance.
Abstract:
A system for implementing Incremental Redundancy (IR) operations in a wireless receiver includes a baseband processor, an equalizer, a system processor, and an IR processing module. The baseband processor receives an analog signal corresponding to a data block and samples the analog signal to produce samples. The equalizer receives the samples from the baseband processor, equalizes the samples, and produces soft decision bits corresponding to the data block. The equalizer may be implemented as a distinct processing component or may be performed by the baseband processor or system processor. The system processor receives at least the soft decision bits and initiates IR operations. The IR processing module receives the soft decision bits of the data block and performs IR operations on the data block in an attempt to correctly decode a corresponding data block.
Abstract:
A system for implementing Incremental Redundancy (IR) operations in a wireless receiver includes at least one processing device, an IR processing function, and IR memory. The at least one processing device is operable to receive analog signals corresponding to a data block, to sample the analog signals to produce samples, to equalize the samples to produce soft decision bits corresponding to the data block, and to initiate IR operations. The IR processing function is operable to perform IR operations on the soft decision bits of the data block in an attempt to correctly decode the data block. The IR memory operably couples to the IR processing function, includes Type I IR memory adapted to store IR status information of the data block, and includes Type II IR memory adapted to store the data block.
Abstract:
A system for implementing Incremental Redundancy (IR) operations in a wireless receiver includes at least one processing device, an IR processing function, and IR memory. The at least one processing device is operable to receive analog signals corresponding to a data block, to sample the analog signals to produce samples, to equalize the samples to produce soft decision bits corresponding to the data block, and to initiate IR operations. The IR processing function is operable to perform IR operations on the soft decision bits of the data block in an attempt to correctly decode the data block. The IR memory operably couples to the IR processing function, includes Type I IR memory adapted to store IR status information of the data block, and includes Type II IR memory adapted to store the data block.