Abstract:
An improved apparatus and method for fluorescence subtraction in Raman spectroscopy, where a narrow band light source and a broad band light source are utilized to stimulate Raman scattering and fluorescence emission from the same subject to produce two Raman/fluorescence spectra. The two light sources, with matched output power, produce similar level of fluorescence emission, yet the Raman scattering signal produced by the broad band light source has much lower spectral intensity than that produced by the narrow band light source. By subtracting the two Raman/fluorescence spectra, the weak Raman signal can be extracted from a strong fluorescence background.
Abstract:
A spectroscopic device with high sensitivity is provided.A spectroscopic device has a charge generating section 3 for generating a charge by using an incident light, a charge generation controlling section for controlling the charge generating section 3 between a first state for capturing a charge generated in a range from a surface to a first depth of the charge generating section 3 and a second state for capturing a charge generated in a range from the surface to a second depth of the charge generating section 3, and a floating diffusion section 2 for outputting a signal corresponding to a charge quantity captured by the charge generating section 3. In the spectroscopic device, the charge capturing depth W in the charge generating section 3 is controlled by controlling the lowest potential Vc of the charge C filled in a charge well 105 of the charge generating section 3.
Abstract:
Devices and methods for hyperspectral and multispectral imaging are discussed. In particular, Image Mapping Spectrometer systems, methods of use, and methods of manufacture are presented. Generally, an image mapping spectrometer comprises an image mapping field unit, a spectral separation unit, and a selective imager. Image mapping spectrometers may be used in spectral imaging of optical samples. In some embodiments, the image mapping field unit of an image mapping spectrometer may be manufactured with surface shaped diamond tools.
Abstract:
The present invention provides a fluorescence detection and photodynamic therapy apparatus including: a combined light source unit 10 including a plurality of coherent and non-coherent light sources 11, 12 and 13 configured to irradiate light onto a to-be-observed object while performing continuous illumination; an optical imaging unit 20 configured to form an image of the to-be-observed object 70 and project the image to an image processing/controlling system 34; a multispectral imaging unit 30 including a one-chip multispectral sensor and the image processing/controlling system 34; a blocking filter 40 installed between the to-be-observed object 70 and the one-chip multispectral sensor 32, the blocking filter being configured to block some light reflected off from the to-be-observed object 70 while allowing some light and fluorescent light to pass therethrough; a computer system 50 configured to process, analyze, reproduce and store the image acquired from the multispectral imaging unit 30, and transfer the image to a display device 60 and control the overall operation of all the related elements; and the display device 60 configured to display a processing result of the image by the computer system 50.
Abstract:
A novel apparatus comprising three main systems: air sampling, detection and computerized electric system; and method of using the same in the sampling, detection and identification of bioaerosols, wherein the identification of the said bioaerosol is base on a multiphoton laser diagnostic technique along with the velocity and aerodynamic size of the particular bioaerosol. After exposing the said bioaerosols with near infrared wavelength laser, the obtained fluorescence spectra has been shown to be unique and particular for each bioaerosol, thus allowing the characterization of the said particles.
Abstract:
A scanning photometer and attendant methods are provided. The scanning photometer is generally characterized by first and second fluorophore excitation sources, an objective lens, and a common emission detector for the detection of first and second fluorophore emission originating from the excitation of the fluorophores via passage of excitation energy, via an optical path of the objective lens, from the excitation sources. Excitation energy and emission energy conditioning elements are like-wise provided, operatively interposed before or after the objective lens as the case may be.
Abstract:
A means for accurately counting desired cells or microorganisms (viable bacteria) in a sample fluid in which contaminants are included is provided. One or plural types of membrane-permeable fluorochromes whose fluorescence amount is amplified by binding to a nucleic acid and glycerin are added to a sample fluid containing cells or microorganisms to be counted and allowed to stand for a certain time. Glycerin is added before or after or simultaneously with the mixing of the sample fluid and the fluorochrome(s). The cells or microorganisms to be counted are counted by staining the cells or microorganisms to be counted, followed by irradiating with light having a specific wavelength to detect the fluorescence emitted from the cells or microorganisms.
Abstract:
A method for automated microscopic analysis wherein the test protocol is obtained from interrogatable data affixed to each microscope slide. The method further comprises the algorithms that implement the test protocol.
Abstract:
The present invention pertains to a method and apparatus for cerebral oximetry. A modulated optical signal based on a digital code sequence is transmitted to the human brain. A temporal transfer characteristic is derived from the modulated optical signal. Oxygen level in the brain is determined based on the temporal transfer characteristic.
Abstract:
The automatic analyzer uses a marker that is to be attached to a measurement object. The marker is made of a substance that becomes excited when irradiated. The automatic analyzer has a function of varying irradiation intensity, and controls the intensity of light emitted from an item marker by adjusting the irradiation intensity for each analysis item or for each analysis vessel. Further, the automatic analyzer has a function of controlling the at least one of the position and angle of an analysis vessel during irradiation, and controls the amount of radiation to the measurement object by adjusting at least one of the distance and angle between an irradiation light source and analysis vessel for each analysis item. Furthermore, the automatic analyzer has a function of varying the integration time of photometric means and controls the integration time for each analysis item or for each analysis vessel.