Abstract:
The present invention provides a method for installing at least one sensor device within a rotor blade of a wind turbine. A first substantially planar light beam is emitted in the interior of the rotor blade. Finally, at least one second substantially planar light beam is emitted in the interior of the rotor blade, wherein the plane of the first planar light beam is oriented at a predetermined angle to the plane of the second planar light beam. Further, the planes of the first and second planar light beams are aligned on the blade flange of the rotor blade. At least one sensor device is subsequently aligned in reference to the planar light beams.
Abstract:
A control system may be used for rotor blade control. The control system comprises a number of turbulence sensors provided across the surface of a wind turbine blade. The control system monitors the turbulence sensors and when turbulent airflow is detected controls an aerodynamic parameter of the blades. In one embodiment, the parameter is the pitch of the rotor blades. This means that stall-like blade conditions can be avoided, and power generation from the wind turbine can be optimized. The control system may also use measurements of output power to be considered in combination with the turbulence based measurements to add a higher level of responsiveness and precise control.
Abstract:
A wind turbine includes a number of blades and an optical measurement system comprising a light source, such as a laser, an optical transmitter part, an optical receiver part, and a signal processor. The light source is optically coupled to the optical transmitter part, which includes an emission point for emitting light in a probing direction. The optical receiver part comprises a receiving point and a detector. The optical receiver part is adapted for receiving a reflected part of light from a probing region along the probing direction and directing the reflected part of light to the detector to generate a signal used to determine a first velocity component of the inflow. The emission point is located in a first blade at a first radial distance from a center axis, and the receiving point is located in the first blade at a second radial distance from the center axis.
Abstract:
A radar system for a wind turbine is provided. The radar system comprises a first radar unit (42) and a control unit (41) arranged to receive an output from the radar unit, the control unit comprising a central processing unit. The central processing unit is configured to perform a first function of determining at least one property of aircraft within a monitoring zone in the vicinity of the wind turbine and controlling a warning device to output a warning signal to detected aircraft based on the determined property; and perform a second function of determining at least one parameter of prevailing weather in the vicinity of the wind turbine. A corresponding method is also provided.
Abstract:
A wind turbine includes an optical sensor system comprising one or more optical sensors comprising: a sensor membrane; a light source for illuminating a surface of the sensor membrane; an optical dispersive element arranged to disperse the light from the light source; and a light detector for receiving a portion of the dispersed light beam after reflection from the surface of the sensor membrane and dispersion of the light beam by the optical dispersive element. The wavelength of the light received at the light detector varies as a function of the displacement of the sensor membrane and the light detector operatively provides an output based on changes in the wavelength of the received light. The wind turbine is operable based on an input to a wind turbine control system received from the optical sensor system.
Abstract:
A wind energy power plant optical vibration sensor is described, using two light sources 15, 16 that emit light at different respective frequencies. The light from the first light source falls on a surface 44 of the wind energy power plant at a detection site. Movements in the surface result in changes to the phase of the light reflected back from the surface which can be detected by mixing the first light with the light emitted from the second light source. The difference in frequencies between the two light sources results in a beating of the resulting interference signal, whereas movements in the sensor surface result in changes in the phase timing and frequency of the beats.
Abstract:
A method for monitoring stress on a wind turbine blade during loading is disclosed. The method includes capturing multiple images at respective locations of the blade. The method also includes measuring temperature at the respective locations based upon captured images. The method further includes calculating stress applied on the blade at the respective locations based upon the measured temperature. The method also includes calculating stress applied on the blade at the respective locations based upon the measured temperature. The method further includes comparing the calculated stress with respective theoretical stress in a finite element model to predict lifetime of the blade. The method also includes alerting an operator in event that the calculated stress at one or more of the respective locations is above a pre-determined limit.
Abstract:
A structure including at least one airfoil, at least one device for detecting surface conditions on a surface of the at least one airfoil, and at least one sensor device, the sensor device including at least one radiation emitter adapted to emit radiation directed towards at least one surface of the airfoil, at least one first detector arranged for receiving a portion of the emitted radiation when reflected from the at least one surface and producing a first output according to an intensity thereof, at least one second detector arranged for receiving a portion of the emitted radiation when reflected from the at least one surface and producing a second output according to an intensity thereof, and control means adapted to receive and evaluate the output from the detectors based on an amount of diffuse reflected and mirror reflected radiation reflected from the at least one surface, and producing an output according thereto.
Abstract:
Methods and apparatus for optically detecting an angle of attack for an airfoil using light detection and ranging (LIDAR). To determine the angle of attack, one or more light beam pulses may be emitted from the leading edge of the airfoil into an (apparently) flowing fluid at various emission angles. The emitted pulses may be backscattered by particles in the fluid, and the backscattered light may be received by a detector at the airfoil. By range gating the returning pulses of backscattered light, a fluid velocity may be determined for each of the emission angles. The angle of attack is identified as the emission angle corresponding to the maximum velocity. A parameter (e.g., pitch or speed) of the airfoil may be controlled based on the angle of attack. In this manner, the airfoil may be manipulated or the shape of the airfoil may be adjusted for increased performance or efficiency.
Abstract:
A control system for rotor blade control is discussed. The control system comprises a number of turbulence sensors provided across the surface of a wind turbine blade. The control system monitors the turbulence sensors and when turbulent air flow is detected controls an aerodynamic parameter of the of the blades. In one embodiment, the parameter is the pitch of the rotor blades. This means that stall-like blade conditions can be avoided, and power generation from the wind turbine can be optimised. The control system may also use measurements of output power as a control system to which the turbulence based measurements add extra responsivity and finer control.