Abstract:
A method of making a light weight component is provided. The method including the steps of: forming a metallic foam core into a desired configuration; inserting a pre-machined component into an opening in the metallic foam core; applying an external metallic shell to an exterior surface of the metallic foam core after it has been formed into the desired configuration and after the pre-machined component has been inserted into the metallic foam core; introducing an acid into an internal cavity defined by the external metallic shell; dissolving the metallic foam core; and removing the dissolved metallic foam core from the internal cavity, wherein the component and the external metallic shell are resistant to the acid.
Abstract:
A turbine component comprises a platform and an airfoil extending radially away from the platform and extending from a leading edge to a trailing edge. A leading edge portion defines the leading edge of the airfoil and a trailing edge portion including the trailing edge. One of the leading and trailing edge portions also includes the platform. The leading edge portion is formed of a first material distinct from a second material forming the trailing edge portion. The first material has an operating temperature capability at least 100F higher than that of the second material. A gas turbine engine is also disclosed.
Abstract:
An example gas turbine engine with multiple flow paths includes, among other things, a core flow path extending from a compressor section to an exhaust section, a bypass duct providing a bypass flow path radially outside the core flow path, and a flow injection device to selectively communicate a first amount of flow or a second amount of flow from the bypass flow path to the exhaust section, the first amount of flow different than the second amount of flow.
Abstract:
An oil cooling system and method are provided for use with respect to a lubricated mechanical system within a bypass configured gas turbine engine. A surface cooler is fluidly linked to the lubricated mechanical system to receive oil from the lubricated mechanical system for cooling and reuse. In an embodiment, the surface cooler is mounted on an existing surface within the bypass airflow path of the bypass configured gas turbine engine to provide effective cooling while avoiding the introduction of additional aerodynamic disturbances in the bypass path. In an embodiment, the surface cooler is mounted on the fan casing or on a fan exit guide vane.
Abstract:
Gas turbine engine systems and related methods involving multiple gas turbine cores are provided. In this regard, a representative gas turbine engine includes: an inlet; a blade assembly mounted to receive intake air via the inlet; and multiple gas turbine cores located downstream of the blade assembly, each of the multiple gas turbine cores being independently operative in a first state, in which rotational energy is provided to rotate the blade assembly, and a second state, in which rotational energy is not provided to rotate the blade assembly.
Abstract:
A gas turbine engine includes an engine case along an engine axis, a conformal accessory drive gearbox housing mounted to the engine case, and at least one accessory mounted to the conformal housing.
Abstract:
A thermal management system for a gas turbine engine includes an additively manufactured nacelle component, at least a portion of the additively manufactured nacelle component forming an additively manufactured heat exchanger that extends into a fan bypass flow.
Abstract:
A rotor blade is provided for a gas turbine engine. This rotor blade includes a rotor blade pair including a mount, a first airfoil and a second airfoil. The mount includes a forked body with a first leg and a second leg. The first airfoil is connected to the first leg. The second airfoil is connected to the second leg and arranged circumferentially next to the first airfoil.
Abstract:
A gas turbine engine assembly according to an exemplary aspect of the present disclosure includes, among other things, a geared architecture configured to rotatably couple a turbine and a compressor of an engine to rotate the compressor at a different speed than the turbine and a fan. A method of adjusting rotational speeds within a gas turbine engine is also disclosed.
Abstract:
An oil thermal management system for a gas turbine engine includes a control system operable to selectively heat oil in the oil system with the heater system greater than a predetermined temperature prior to engine start. A method of starting a gas turbine engine includes sensing an oil temperature with respect to a predetermined oil temperature for engine start; and heating the oil to the predetermined oil temperature for engine start in response to the oil temperature being less than the predetermined oil temperature.