Abstract:
A method for applying disinfectant to the teats of a dairy livestock includes determining that a stall of a rotary milking platform housing a dairy livestock is located adjacent to a track that has a carriage carrying a robotic arm. The method continues by communicating a first signal that causes operation of a first actuator such that the carriage moves along the track in relation to the rotary milking platform and independent of any physical coupling between the carriage and the rotary milking platform and in a direction corresponding to a direction of rotation of the rotary milking platform. The method concludes by communicating one or more additional signals that causes operation of one or more actuators of the robotic arm such that at least a portion of the robotic arm extends between the hind legs of a dairy livestock.
Abstract:
A system includes an equipment portion and a plurality of milking box stalls arranged adjacent to the equipment portion. Each of the milking box stalls is of a size sufficient to accommodate a dairy livestock. The system further includes a robotic attacher housed in the equipment portion and configured to service each of the plurality of milking box stalls at different times. The robotic attacher has a gripping portion with a spray nozzle. The gripping portion is operable to rotate around a longitudinal axis such that during a milking operation the spray nozzle is positioned on the bottom of the gripping portion, and after the milking operation the spray nozzle is positioned on the top of the gripping portion.
Abstract:
A robotic attacher retrieves first and second cups from the right side of an equipment area located behind a dairy livestock and attaches the cups to the teats of the dairy livestock in sequence. The sequence comprises attaching the first cup to the right front teat and a second cup to the left front teat of the dairy livestock. The robotic attacher retrieves third and fourth cups from the right side of the equipment area and attaches the cups to the teats of the dairy livestock in sequence. The sequence comprises attaching the third cup to the right rear teat and the fourth cup to the left rear teat.
Abstract:
A system includes a controller and a robotic arm. The controller accesses an image signal of an udder of a dairy livestock, and determines a spray position by processing the accessed image signal to determine a tangent at the rear of the udder and a tangent at the bottom of the udder. The spray position is a position relative to the intersection of the two tangents. A robotic arm communicatively coupled to the controller positions a spray tool at the spray position.
Abstract:
A system includes a milking stall to accommodate a dairy livestock and a robotic attacher. The robotic attacher extends under the dairy livestock and comprises a nozzle. The robotic attacher is operable to rotate such that, during a first operation, the nozzle is positioned generally on the bottom of the robotic attacher, and during a second operation, the nozzle is positioned generally on the top of the robotic attacher.
Abstract:
A method for operating a robotic arm, comprises determining a speed of rotation of a rotary milking platform, the rotary milking platform having a stall for a dairy livestock. The method continues by moving a carriage along a track positioned adjacent to the rotary milking platform at a rate that is based at least in part upon the determined speed of rotation of the rotary milking platform, wherein the carriage moves independently of the rotary milking platform and in a direction corresponding to a direction of rotation of the rotary milking platform. The method continues by extending a robotic arm that is coupled to the carriage between the legs of the dairy livestock, wherein the robotic arm remains extended between the legs of the dairy livestock for a period of time as the stall rotates adjacent to the robotic arm. The method concludes by retracting the robotic arm from between the legs of the dairy livestock as the stall rotates adjacent to the robotic arm.
Abstract:
A system comprises a robotic arm operable to extend between the legs of a dairy livestock located in a milking stall of a rotary milking platform, a camera operable to generate an image signal corresponding to a rear of the dairy livestock, and a controller communicatively coupled to the robotic arm and the camera. The controller determines whether a milking claw is attached to the teats of the dairy livestock by receiving the image signal generated by the camera and processing the image signal. If it is determined based on the image signal that the milking claw is not attached, the controller controls the robotic arm to extend between the legs of the dairy livestock. If it is determined based on the image signal that the milking claw is attached, the controller controls the robotic arm not to extend between the legs of the dairy livestock.
Abstract:
A system for processing an image includes a three-dimensional camera that captures an image of a dairy livestock, wherein the image comprises a plurality of adjacent pixels, each pixel associated with a depth location. The system further includes a processor communicatively coupled to the three-dimensional camera. The processor determines that the depth locations of a first portion of the adjacent pixels fluctuate beyond a predetermined threshold over time, and discards the first portion of the adjacent pixels from the image based at least in part upon the determination.
Abstract:
A method for operating a robotic arm, comprises determining a speed of rotation of a rotary milking platform, the rotary milking platform having a stall for a dairy livestock. The method continues by moving a carriage along a track positioned adjacent to the rotary milking platform at a rate that is based at least in part upon the determined speed of rotation of the rotary milking platform, wherein the carriage moves independently of the rotary milking platform and in a direction corresponding to a direction of rotation of the rotary milking platform. The method continues by extending a robotic arm that is coupled to the carriage between the legs of the dairy livestock, wherein the robotic arm remains extended between the legs of the dairy livestock for a period of time as the stall rotates adjacent to the robotic arm. The method concludes by retracting the robotic arm from between the legs of the dairy livestock as the stall rotates adjacent to the robotic arm.
Abstract:
A system for operating a robotic arm comprises a carriage and a robotic arm. The carriage is mounted on a track adjacent to a rotary milking platform having a substantially circular perimeter and a stall for a dairy livestock. The carriage moves along a substantially straight portion of the track tangent to and outside the perimeter of the rotary milking platform at a rate based at least in part upon a speed of rotation of the rotary milking platform. The carriage moves in a direction corresponding to the direction of rotation of the rotary milking platform and such movement of the carriage is independent of any physical coupling between the carriage and the rotary milking platform. The robotic arm extends between the legs of the dairy livestock.