-
公开(公告)号:US12210900B2
公开(公告)日:2025-01-28
申请号:US17746201
申请日:2022-05-17
Applicant: Intel Corporation
Inventor: Joydeep Ray , Abhishek R. Appu , Altug Koker , Kamal Sinha , Balaji Vembu , Rajkishore Barik , Eriko Nurvitadhi , Nicolas Galoppo Von Borries , Tsung-Han Lin , Sanjeev Jahagirdar , Vasanth Ranganathan
Abstract: A mechanism is described for facilitating intelligent thread scheduling at autonomous machines. A method of embodiments, as described herein, includes detecting dependency information relating to a plurality of threads corresponding to a plurality of workloads associated with tasks relating to a processor including a graphics processor. The method may further include generating a tree of thread groups based on the dependency information, where each thread group includes multiple threads, and scheduling one or more of the thread groups associated a similar dependency to avoid dependency conflicts.
-
公开(公告)号:US20250004861A1
公开(公告)日:2025-01-02
申请号:US18883755
申请日:2024-09-12
Applicant: Intel Corporation
Inventor: Rajkishore Barik , Stephan A. Herhut , Jaswanth Sreeram , Tatiana Shpeisman , Richard L. Hudson
Abstract: Disclosed examples include scheduler circuitry to allocate a first task to a first work queue in memory; and a first processor circuit of a first type, the first processor circuit to cause movement of the first task from the first work queue to a second work queue in the memory, the second work queue accessible by a second processor circuit of a second type, the movement atomically performed via a read operation and a write operation to update the second work queue in a same bus cycle to prevent multiple entities from moving the first task in the same bus cycle.
-
公开(公告)号:US20240257294A1
公开(公告)日:2024-08-01
申请号:US18436494
申请日:2024-02-08
Applicant: Intel Corporation
Inventor: Prasoonkumar Surti , Narayan Srinivasa , Feng Chen , Joydeep Ray , Ben J. Ashbaugh , Nicolas C. Galoppo Von Borries , Eriko Nurvitadhi , Balaji Vembu , Tsung-Han Lin , Kamal Sinha , Rajkishore Barik , Sara S. Baghsorkhi , Justin E. Gottschlich , Altug Koker , Nadathur Rajagopalan Satish , Farshad Akhbari , Dukhwan Kim , Wenyin Fu , Travis T. Schluessler , Josh B. Mastronarde , Linda L. Hurd , John H. Feit , Jeffery S. Boles , Adam T. Lake , Karthik Vaidyanathan , Devan Burke , Subramaniam Maiyuran , Abhishek R. Appu
CPC classification number: G06T1/20 , G06F9/45533 , G06F9/5061 , G06F9/5094 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/084 , G06F8/41 , G06F2009/45583
Abstract: Embodiments provide mechanisms to facilitate compute operations for deep neural networks. One embodiment comprises a graphics processing unit comprising one or more multiprocessors, at least one of the one or more multiprocessors including a register file to store a plurality of different types of operands and a plurality of processing cores. The plurality of processing cores includes a first set of processing cores of a first type and a second set of processing cores of a second type. The first set of processing cores are associated with a first memory channel and the second set of processing cores are associated with a second memory channel.
-
公开(公告)号:US12050984B2
公开(公告)日:2024-07-30
申请号:US17083080
申请日:2020-10-28
Applicant: Intel Corporation
Inventor: Rajkishore Barik , Elmoustapha Ould-Ahmed-Vall , Xiaoming Chen , Dhawal Srivastava , Anbang Yao , Kevin Nealis , Eriko Nurvitadhi , Sara S. Baghsorkhi , Balaji Vembu , Tatiana Shpeisman , Ping T. Tang
IPC: G06N3/06 , G06F9/30 , G06F9/38 , G06F16/17 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/084 , G06T1/20
CPC classification number: G06N3/063 , G06F9/3001 , G06F9/3017 , G06F9/3851 , G06F9/3887 , G06F9/3895 , G06F16/17 , G06N3/044 , G06N3/045 , G06N3/084 , G06T1/20
Abstract: One embodiment provides for a general-purpose graphics processing unit including a scheduler to schedule multiple matrix operations for execution by a general-purpose graphics processing unit. The multiple matrix operations are determined based on a single machine learning compute instruction. The single machine learning compute instruction is a convolution instruction and the multiple matrix operations are associated with a convolution operation.
-
95.
公开(公告)号:US12039331B2
公开(公告)日:2024-07-16
申请号:US17967283
申请日:2022-10-17
Applicant: Intel Corporation
Inventor: Himanshu Kaul , Mark A. Anders , Sanu K. Mathew , Anbang Yao , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Tatiana Shpeisman , Abhishek R. Appu , Altug Koker , Kamal Sinha , Balaji Vembu , Nicolas C. Galoppo Von Borries , Eriko Nurvitadhi , Rajkishore Barik , Tsung-Han Lin , Vasanth Ranganathan , Sanjeev Jahagirdar
IPC: G06F9/30 , G06F7/483 , G06F7/544 , G06F9/38 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/08 , G09G5/393 , G06F1/16 , G06N20/00 , G06T15/00
CPC classification number: G06F9/3001 , G06F7/483 , G06F7/5443 , G06F9/30014 , G06F9/30036 , G06F9/3851 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/08 , G09G5/393 , G06F1/16 , G06F9/30025 , G06F9/3013 , G06F2207/3824 , G06N20/00 , G06T15/005
Abstract: One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute an intermediate product of 16-bit operands and to compute a 32-bit sum based on the intermediate product.
-
公开(公告)号:US12001944B2
公开(公告)日:2024-06-04
申请号:US17874876
申请日:2022-07-27
Applicant: Intel Corporation
Inventor: Rajkishore Barik , Brian T. Lewis , Murali Sundaresan , Jeffrey Jackson , Feng Chen , Xiaoming Chen , Mike Macpherson
Abstract: A mechanism is described for facilitating smart distribution of resources for deep learning autonomous machines. A method of embodiments, as described herein, includes detecting one or more sets of data from one or more sources over one or more networks, and introducing a library to a neural network application to determine an optimal point at which to apply frequency scaling without degrading performance of the neural network application at a computing device.
-
公开(公告)号:US20240078629A1
公开(公告)日:2024-03-07
申请号:US18466991
申请日:2023-09-14
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Tsung-Han Lin , Kamal Sinha , Rajkishore Barik , Nicolas C. Galoppo Von Borries
IPC: G06T1/20 , G06F9/30 , G06F9/38 , G06F9/48 , G06F12/02 , G06F12/0811 , G06F12/0815 , G06F12/0831 , G06F12/0888 , G06F17/16 , G06F18/2136 , G06N3/04 , G06N3/08 , G06N20/00 , G06T1/60 , G06T15/00 , H03M7/30
CPC classification number: G06T1/20 , G06F9/3001 , G06F9/3885 , G06F9/4881 , G06F12/0207 , G06F12/0811 , G06F12/0815 , G06F12/0831 , G06F12/0888 , G06F17/16 , G06F18/2136 , G06N3/04 , G06N3/08 , G06N20/00 , G06T1/60 , G06T15/005 , H03M7/30 , G06F2212/1024 , G06F2212/302 , G06F2212/401 , G06F2212/621 , G06T2200/28
Abstract: Techniques to improve performance of matrix multiply operations are described in which a compute kernel can specify one or more element-wise operations to perform on output of the compute kernel before the output is transferred to higher levels of a processor memory hierarchy.
-
公开(公告)号:US11922535B2
公开(公告)日:2024-03-05
申请号:US18168207
申请日:2023-02-13
Applicant: Intel Corporation
Inventor: Prasoonkumar Surti , Narayan Srinivasa , Feng Chen , Joydeep Ray , Ben J. Ashbaugh , Nicolas C. Galoppo Von Borries , Eriko Nurvitadhi , Balaji Vembu , Tsung-Han Lin , Kamal Sinha , Rajkishore Barik , Sara S. Baghsorkhi , Justin E. Gottschlich , Altug Koker , Nadathur Rajagopalan Satish , Farshad Akhbari , Dukhwan Kim , Wenyin Fu , Travis T. Schluessler , Josh B. Mastronarde , Linda L. Hurd , John H. Feit , Jeffery S. Boles , Adam T. Lake , Karthik Vaidyanathan , Devan Burke , Subramaniam Maiyuran , Abhishek R. Appu
CPC classification number: G06T1/20 , G06F9/45533 , G06F9/5061 , G06F9/5094 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/084 , G06F8/41 , G06F2009/45583
Abstract: Embodiments provide mechanisms to facilitate compute operations for deep neural networks. One embodiment comprises a graphics processing unit comprising one or more multiprocessors, at least one of the one or more multiprocessors including a register file to store a plurality of different types of operands and a plurality of processing cores. The plurality of processing cores includes a first set of processing cores of a first type and a second set of processing cores of a second type. The first set of processing cores are associated with a first memory channel and the second set of processing cores are associated with a second memory channel.
-
公开(公告)号:US11803935B2
公开(公告)日:2023-10-31
申请号:US17881720
申请日:2022-08-05
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Tsung-Han Lin , Kamal Sinha , Rajkishore Barik , Nicolas C. Galoppo Von Borries
IPC: G06F17/16 , G06T1/20 , G06F9/30 , G06F9/38 , G06F12/0811 , G06F12/0815 , G06F12/0831 , G06F12/0888 , H03M7/30 , G06N20/00 , G06F12/02 , G06F18/2136 , G06F9/48 , G06N3/04 , G06N3/08 , G06T1/60 , G06T15/00
CPC classification number: G06T1/20 , G06F9/3001 , G06F9/3885 , G06F9/4881 , G06F12/0207 , G06F12/0811 , G06F12/0815 , G06F12/0831 , G06F12/0888 , G06F17/16 , G06F18/2136 , G06N3/04 , G06N3/08 , G06N20/00 , G06T1/60 , G06T15/005 , H03M7/30 , G06F2212/1024 , G06F2212/302 , G06F2212/401 , G06F2212/621 , G06T2200/28
Abstract: Techniques to improve performance of matrix multiply operations are described in which a compute kernel can specify one or more element-wise operations to perform on output of the compute kernel before the output is transferred to higher levels of a processor memory hierarchy.
-
公开(公告)号:US20230260072A1
公开(公告)日:2023-08-17
申请号:US18168207
申请日:2023-02-13
Applicant: Intel Corporation
Inventor: Prasoonkumar Surti , Narayan Srinivasa , Feng Chen , Joydeep Ray , Ben J. Ashbaugh , Nicolas C. Galoppo Von Borries , Eriko Nurvitadhi , Balaji Vembu , Tsung-Han Lin , Kamal Sinha , Rajkishore Barik , Sara S. Baghsorkhi , Justin E. Gottschlich , Altug Koker , Nadathur Rajagopalan Satish , Farshad Akhbari , Dukhwan Kim , Wenyin Fu , Travis T. Schluessler , Josh B. Mastronarde , Linda L. Hurd , John H. Feit , Jeffery S. Boles , Adam T. Lake , Karthik Vaidyanathan , Devan Burke , Subramaniam Maiyuran , Abhishek R. Appu
CPC classification number: G06T1/20 , G06F9/45533 , G06F9/5061 , G06F9/5094 , G06N3/063 , G06N3/084 , G06N3/044 , G06N3/045 , G06F8/41
Abstract: Embodiments provide mechanisms to facilitate compute operations for deep neural networks. One embodiment comprises a graphics processing unit comprising one or more multiprocessors, at least one of the one or more multiprocessors including a register file to store a plurality of different types of operands and a plurality of processing cores. The plurality of processing cores includes a first set of processing cores of a first type and a second set of processing cores of a second type. The first set of processing cores are associated with a first memory channel and the second set of processing cores are associated with a second memory channel.
-
-
-
-
-
-
-
-
-