Abstract:
A media converter to enable Ethernet in thin-profile mobile devices. The media converter can be designed to interface with a thin-profile mobile device via a short-reach Ethernet link and to interface with a network device via a conventional Ethernet link. Protocol conversion is therefore obviated, while accommodating a low-profile Ethernet port in the mobile device.
Abstract:
Aspects of a method and system for end-to-end management of energy efficient networking protocols are provided. In this regard, a path between two network nodes may be determined and one or more messages may be generated. The one or more messages may be communicated to one or more network nodes along the determined path and may configure an EEN control policy and/or one or more (EEN) parameters in those network nodes. The one or more generated messages may comprise a distinct marking that may, upon detection by the network nodes along the determined path, trigger configuration of the EEN control policy and/or EEN parameters within the one or more network nodes. The one or more messages may be may be utilized to enable and disable EEN in one or more network nodes along the path.
Abstract:
A system and method for achieving greater than 10 Gbit/s transmission rates for twisted pair physical layer devices. An architecture is provided that enables transmission at the next standardized transmission rate over structured cabling.
Abstract:
A system and method for enhanced physical layer device autonegotiation. The autonegotiation process typically identifies the highest common denominator amongst various standardized modes of operation. Enhanced autonegotiation can be used to select a mode of operation that is not the highest common denominator. Enhanced autonegotiation can also identify a non-standardized mode of operation using next page messaging, additional physical signaling, or Layer 2 messaging.
Abstract:
An access device receives content from a broadband IP network to be communicated to a wireless handset over a radio access network (RAN). The access device acquires a user profile utilized in the radio network for the wireless handset. Based on the acquired user profile, the access device determines transmission parameters utilized for communicating the received content to the wireless handset using an air interface protocol over the radio access network. A security level and/or a security protocol, a transcoding mechanism, and/or transmission bit rate are determined based on the acquired user profile. A resolution, transmission bit rate, coding structure, security protocol and/or security level for transmitting the received content to the wireless handset are adjusted based on the acquired user profile. Alternately, the access device is enabled to receive content from the wireless handset using a transmission profile determined Lased on user profile of the wireless handset.
Abstract:
Network node modules within a vehicle are arranged to form a reconfigurable automotive neural network. Each network node module includes one or more subsystems for performing one or more operations and a local processing module for communicating with the one or more subsystems. A management system enables traffic from the one or more subsystems of a particular network node module to be re-routed to an external processing module upon failure of the local processing module of that particular network node module.
Abstract:
Aspects of a method and system for service mobility via a femtocell infrastructure are provided. In this regard, a mobile cellular enabled communication device may detect a femtocell operable to deliver content for one or more services to the mobile cellular enabled communication device, where the one or more services may be provided via a set-top-box communicatively coupled to the femtocell. The mobile cellular enabled communication device may communicate a user profile to the femtocell, wherein information in the profile may be utilized by the set-top-box to authenticate and/or authorize access to the services by the mobile cellular enabled communication device and thus the mobile cellular enabled communication device may receive the content from the set-top-box based on the authentication and/or authorization. The content may comprise voice, video, data, text and/or still images. The mobile cellular enabled communication device may detect the femtocell by receiving one or broadcast messages from the femtocell.
Abstract:
A broadband gateway may be used to authorize transactions associated with one or more accounts, which may be associated with a user of the broadband gateway. The transaction may be handled by the broadband gateway. The authorizations may be performed based on information associated with the accounts, whose storage may be controlled by the broadband gateway. The broadband gateway may block and/or terminate transactions failing authentication and/or validation, which may be performed based on the stored information. The transactions may be initiated within a network serviced by the broadband gateway. The transactions may also be initiated outside the serviced network. The stored information may comprise a user profile, which may comprise a plurality of settings for controlling and/or managing authorization performed by the broadband gateway. The user profiles may be configurable by users, wherein configuration may comprise initializing and/or modifying one or more of the transaction related settings.
Abstract:
A device in an industrial environment may adapt communications to account for industrial noise in the industrial environment. The device may send a first communication to a destination device in the industrial environment using a first communication technology. The device may access noise prediction data for the industrial environment, and the noise prediction data may indicate predicted noise for one or more portions of the industrial environment, including a communication pathway to the destination device using the first communication technology. The device may adapt a subsequent communication to the destination device to account for the predicted noise along the communication pathway.
Abstract:
Automotive area networks (AAN) have a substantially fixed network topology, meaning that the physical media used for communications between devices included in the AAN is known. For example, the physical connections within an AAN, sometimes provided by wiring harnesses, can include fixed lengths of twisted pairs of wire (“twisted pairs”). Pre-compensation parameters related to characteristics of the twisted pairs can be determined at the factory, and loaded into the memory of devices connected to the AAN. These pre-compensation parameters are used to improve the fast wake up and link acquisition times of connected devices. Various characteristics of the physical communication channel are measured or estimated as a function of mechanical, ingress, climactic, and environmental variations (MICE), and used to update the pre-compensation parameters.