Abstract:
The exemplary embodiments herein provide a sealed transparent LCD assembly having a front and rear glass panel with a spacer positioned between the two panels to provide a sealed cavity containing a liquid crystal display (LCD). A wireless transmitter/receiver may be placed within the sealed cavity to receive image or video data wirelessly. The sealed transparent LCD assembly may be used with a display case which defines a cavity housing a second wireless transmitter/receiver which can push the image or video data to the wireless transmitter/receiver contained within the sealed cavity between the two glass panels.
Abstract:
The exemplary embodiments herein comprise a back to back electronic display assembly having a first display assembly positioned back to back with a second display assembly. A plenum is preferably positioned in between the first and second display assemblies with a first gap defined between the plenum and the first display assembly and a second gap defined between the plenum and the second display assembly. A fan is preferably positioned to force air through the first and second gaps. A plenum fan may be used to circulate air around the plenum. Preferably, the second display assembly can move relative to the first display assembly to provide access to the interior of the plenum.
Abstract:
The exemplary embodiments herein provide a lighting system for a display case having at least one edge. A lighting assembly is positioned along an edge of the display case or a door assembly, where a transparent or semi-transparent rod is positioned adjacent to the lighting assembly to act as a lens element. The rod is generally placed parallel to the edge of the display case or door assembly. The lighting assembly preferably includes a mounting structure which contains a substrate with a plurality of LEDs along with the rod. A blinder may extend rearwardly from the mounting structure to prevent headlighting.
Abstract:
A system for cooling an electronic image assembly using a heat exchanger with an internal fan assembly. Circulating gas may also be used to cool a front portion of the electronic image assembly or any other internal cavity of the electronic display housing. The circulating gas may be drawn through a heat exchanger so that heat may be transferred to an ambient gas. The heat exchanger may have an internal fan assembly for drawing ambient air through the heat exchanger and exhausting it out of the display housing. The heat exchanger may be divided into two portions so that the fan assembly is placed between the two portions.
Abstract:
Exemplary embodiments include an electronic display assembly for back to back electronic image assemblies. A first closed gaseous loop may encircle the first electronic image assembly while a second closed gaseous loop may encircle the second electronic image assembly. A heat exchanger is preferably positioned within the path of the first and second closed gaseous loop along with an open loop of ambient air. A circulating fan(s) may be used to force circulating gas around the closed gaseous loops. An open loop fan may be used to force ambient air through the heat exchanger and through an optional channel behind each electronic image assembly.
Abstract:
An apparatus for cooling an electronic image assembly with ambient gas and circulating gas is disclosed. A first fan may be positioned to force the circulating gas around the electronic image assembly in a closed loop while a second fan may be positioned to cause a flow of ambient gas. A structure is preferably positioned to allow the circulating gas to cross the flow of the ambient gas while substantially prohibiting the circulating gas from mixing with the ambient gas. A pair of manifolds may be placed along the sides of the electronic image assembly and may be in gaseous communication with a plurality of channels placed behind the electronic image assembly. A heat exchanger may be used in some exemplary embodiments.
Abstract:
The exemplary embodiments herein provide an airguide backlight assembly having an anterior element, a reflective pan positioned posterior to the anterior element, and a light source positioned to direct light towards the reflective pan. A lens element may be placed in front of each light source. The reflective pan preferably contains a slope or curve so that light emitted from the light sources can be reflected and/or refracted to distribute the light uniformly to the anterior element. In some embodiments, blinders may be positioned between the light sources and the anterior element as well as between the light sources and the reflective pan.
Abstract:
Disclosed herein is a system for controlling the interactions of light between adjacent subsections of a dynamic LED backlight. Preferred embodiments contain a dividing wall positioned between each adjacent subsection of the LED backlight. The dividing wall may be in contact with the LED backlight and extend away from the LED backlight. The dividing wall may prohibit light from a first subsection from entering an adjacent second subsection at its full luminance. The luminance for each adjacent subsection may be approximately half of the full luminance of each subsection, when measured at the location of the dividing wall.
Abstract:
A heat exchanger assembly for an electronic image assembly placed within a housing where ambient air surrounds the exterior of the housing and a rear plate may be placed behind a backlight to create a channel. An ambient air fan may be placed between two portions of a heat exchanger to force ambient air through the heat exchanger. The fan may also be positioned to also force ambient air through the channel. A circulating gas fan may also be placed within the housing to force circulating gas through at least one portion of the heat exchanger.
Abstract:
The exemplary embodiments disclosed herein provide a heat exchanger assembly for cooling power module bricks, having a plurality of heat exchanger layers where a top layer is in conductive thermal communication with the power module brick. A series of metallic plates are preferably positioned within each heat exchanger layer and are preferably aligned with the power module brick. A circulating fan may be positioned to force circulating gas across the power module brick and through the heat exchanger. An external air fan may be positioned to force external air through the heat exchanger. Pass through junctions may be positioned near edges of the heat exchanger to permit the circulating gas to cross paths with the external air without allowing the two gas flows to mix with one another.