Abstract:
The exemplary embodiments herein provide an electronic display with a display controller in electrical connection with the electronic display and adapted to direct the electronic display to operate per nighttime instructions if the present time is between sunrise and sunset, without accepting any input from an ambient light sensor, and direct the electronic display to operate per daytime instructions if the present time is between sunset and sunrise, without accepting any input from an ambient light sensor. The nighttime instructions may include a first setting for gamma while the daytime instructions may include a second setting for gamma. Sunrise and sunset transition periods can be calculated using Artificial Ambient Sensor Data (AAS), with further settings for gamma chosen based on the AAS data.
Abstract:
Disclosed herein is a system for controlling the interactions of light between adjacent subsections of a dynamic LED backlight. Preferred embodiments contain a dividing wall positioned between each adjacent subsection of the LED backlight. The dividing wall may be in contact with the LED backlight and extend away from the LED backlight. The dividing wall may prohibit light from a first subsection from entering an adjacent second subsection at its full luminance. The luminance for each adjacent subsection may be approximately half of the full luminance of each subsection, when measured at the location of the dividing wall.
Abstract:
A system and method for altering the characteristics of a display based on environmental data is disclosed. Exemplary embodiments provide a light sensor, an environmental processing unit which is adapted to receive electrical signals from the light sensor and generate an environmentally-reactive control signal (Sa), an image signal processor which accepts Sa and an encoded image signal (Se) and generates a pre-decoding image signal (Sp), and an image signal decoder which accepts Sp and generates a decoded image signal for the display. The environmentally-reactive control signal (Sa) may contain the instantaneous value of the desired display black level Sb. Alternatively or additionally, the environmentally-reactive control signal (Sa) may contain a signal linearity modification value.
Abstract:
Disclosed herein is a system for controlling the interactions of light between adjacent subsections of a dynamic LED backlight. Preferred embodiments contain a dividing wall positioned between each adjacent subsection of the LED backlight. The dividing wall may be in contact with the LED backlight and extend away from the LED backlight. The dividing wall may prohibit light from a first subsection from entering an adjacent second subsection at its full luminance. The luminance for each adjacent subsection may be approximately half of the full luminance of each subsection, when measured at the location of the dividing wall.
Abstract:
A system and method for altering the characteristics of a display based on environmental data is disclosed. Exemplary embodiments provide a light sensor, an environmental processing unit which is adapted to receive electrical signals from the light sensor and generate an environmentally-reactive control signal (Sa), an image signal processor which accepts Sa and an encoded image signal (Se) and generates a pre-decoding image signal (Sp), and an image signal decoder which accepts Sp and generates a decoded image signal for the display. The environmentally-reactive control signal (Sa) may contain the instantaneous value of the desired display black level Sb. Alternatively or additionally, the environmentally-reactive control signal (Sa) may contain a signal linearity modification value.
Abstract:
A system and method for controlling subsections of an LED backlight for a liquid crystal display (LCD). Exemplary embodiments analyze the histograms for each subsection of the LCD which corresponds with the subsections of the LED backlight in order to produce a proper luminance for the backlight subsection. The proper luminance may be less than the maximum or typical luminance that is produced by common LED backlights. By reducing the luminance the resulting display can have less power consumption, longer lifetime, and higher contrast ratios. The original subpixel voltages for the LCD are re-scaled based on the proper luminance for the backlight subsection. Virtual backlight data may be created to simulate the luminance at each subpixel and the virtual backlight data may be used to re-scale the original subpixel voltages. The virtual backlight data may be used to blend between adjacent subsections of the LED backlight which may be producing different levels of luminance.
Abstract:
The exemplary embodiments herein provide a method for environmental adaptation of electronic display characteristics, comprising the steps of determining the sunset and sunrise times for the day and determining whether the present time is between sunrise and sunset or between sunset and sunrise. An exemplary method would then proceed by selecting a gamma for the display based on whether the present time is between sunrise and sunset or between sunset and sunrise, and driving the display at the selected gamma. The gamma can further be selected based on Artificial Ambient Light Sensor (AAS) data, which can be calculated during sunrise and sunset transition times.
Abstract:
The exemplary embodiments herein provide an electronic display with a display controller in electrical connection with the electronic display and adapted to direct the electronic display to operate per nighttime instructions if the present time is between sunrise and sunset, without accepting any input from an ambient light sensor, and direct the electronic display to operate per daytime instructions if the present time is between sunset and sunrise, without accepting any input from an ambient light sensor. The nighttime instructions may include a first setting for gamma while the daytime instructions may include a second setting for gamma. Sunrise and sunset transition periods can be calculated using Artificial Ambient Sensor Data (AAS), with further settings for gamma chosen based on the AAS data.
Abstract:
A system and method for altering the characteristics of a display based on environmental data is disclosed. Exemplary embodiments provide a light sensor, an environmental processing unit which is adapted to receive electrical signals from the light sensor and generate an environmentally-reactive control signal (Sa), an image signal processor which accepts Sa and an encoded image signal (Se) and generates a pre-decoding image signal (Sp), and an image signal decoder which accepts Sp and generates a decoded image signal for the display. The environmentally-reactive control signal (Sa) may contain the instantaneous value of the desired display black level Sb. Alternatively or additionally, the environmentally-reactive control signal (Sa) may contain a signal linearity modification value.
Abstract:
A system and method for controlling subsections of an LED backlight for a liquid crystal display (LCD). Exemplary embodiments analyze the histograms for each subsection of the LCD which corresponds with the subsections of the LED backlight in order to produce a proper luminance for the backlight subsection. The proper luminance may be less than the maximum or typical luminance that is produced by common LED backlights. By reducing the luminance the resulting display can have less power consumption, longer lifetime, and higher contrast ratios. The original subpixel voltages for the LCD are re-scaled based on the proper luminance for the backlight subsection. Virtual backlight data may be created to simulate the luminance at each subpixel and the virtual backlight data may be used to re-scale the original subpixel voltages. The virtual backlight data may be used to blend between adjacent subsections of the LED backlight which may be producing different levels of luminance.