Abstract:
A MTJ in an MRAM array is disclosed with a composite free layer having a lower crystalline layer contacting a tunnel barrier and an upper amorphous NiFeX layer for improved bit switching performance. The crystalline layer is Fe, Ni, or FEB with a thickness of at least 6 Angstroms which affords a high magnetoresistive ratio. The X element in the NiFeX layer is Mg, Hf, Zr, Nb, or Ta with a content of 5 to 30 atomic % NiFeX thickness is preferably between 20 to 40 Angstroms to substantially reduce bit line switching current and number of shorted bits. In an alternative embodiments, the crystalline layer may be a Fe/NiFe bilayer. Optionally, the amorphous layer may have a NiFeM1/NiFeM2 configuration where M1 and M2 are Mg, Hf, Zr, Nb, or Ta, and M1 is unequal to M2. Annealing at 300° C. to 360° C. provides a high magnetoresistive ratio of about 150%.
Abstract:
A magnetic head includes first and second coils, a main pole, a write shield, a return path section, and a core part. The return path section includes a yoke part magnetically connected to the write shield, and a coupling part located away from a medium facing surface and magnetically coupling the yoke part and the main pole to each other. The first coil is located on the front side in the direction of travel of a recording medium relative to the main pole and wound around the coupling part. The core part is located farther from the medium facing surface than is the coupling part, and is magnetically connected to the main pole. The second coil is located on the front side in the direction of travel of the recording medium relative to the main pole and wound around the core part.
Abstract:
Three structures, and processes for manufacturing them, that improve the performance of a TAMR feature in a magnetic write head are disclosed. This improvement is achieved by making the separation between the edge plasmon generator and the plasmon shield less than the separation between the edge plasmon generator and the optical wave-guide.
Abstract:
A design is disclosed for a microwave assisted magnetic recording device wherein direct current and rf current are simultaneously injected from a bias tee into a spin transfer oscillator (STO) between a main pole and write shield to improve the assist process. The STO oscillation layer (OL) has a large angle magnetization oscillation frequency that is locked to a magnetic medium bit resonance frequency f0 when the rf current has a frequency f=f0 and a threshold current density is applied. Alternatively, the OL magnetization oscillation frequency may be adjusted closer to f0 to improve the assist process. A third advantage is lowering the threshold current density when both direct current and rf current are injected into the STO during a write process. The main pole is grounded when direct current and rf current are injected into a write shield.
Abstract:
A magnetic recording head is fabricated with a pole tip shielded laterally on its sides by a pair of symmetrically disposed side shields formed of porous heterogeneous material that contains non-magnetic inclusions. The non-magnetic inclusions, when properly incorporated within the magnetic matrix of the shields, promote the formation of flux loops within the shields that have portions that are parallel to the ABS and do not display locally disorganized and dynamic regions of flux during the creation of magnetic transitions within the recording medium by the magnetic pole. These flux loop portions, combine with the magnetic flux emerging from the main pole to create a net writing field that significantly reduces adjacent track erasures (ATE) and wide area erasures (WATE).
Abstract:
A TMR sensor with a free layer having a FL1/FL2/FL3 configuration is disclosed in which FL1 is FeCo or a FeCo alloy with a thickness between 2 and 15 Angstroms. The FL2 layer is made of CoFeB or a CoFeB alloy having a thickness from 2 to 10 Angstroms. The FL3 layer is from 10 to 100 Angstroms thick and has a negative λ to offset the positive λ from FL1 and FL2 layers and is comprised of CoB or a CoBQ alloy where Q is one of Ni, Mn, Tb, W, Hf, Zr, Nb, and Si. Alternatively, the FL3 layer may be a composite such as CoB/CoFe, (CoB/CoFe)n where n is ≧2 or (CoB/CoFe)m/CoB where m is ≧1. The free layer described herein affords a high TMR ratio above 60% while achieving low values for λ (
Abstract:
A dual spin filter that minimizes spin-transfer magnetization switching current (Jc) while achieving a high dR/R in STT-RAM devices is disclosed. The bottom spin valve has a MgO tunnel barrier layer formed with a natural oxidation process to achieve low RA, a CoFe/Ru/CoFeB—CoFe pinned layer, and a CoFeB/FeSiO/CoFeB composite free layer with a middle nanocurrent channel (NCC) layer to minimize Jc0. The NCC layer may have be a composite wherein conductive M(Si) grains are magnetically coupled with adjacent ferromagnetic layers and are formed in an oxide, nitride, or oxynitride insulator matrix. The upper spin valve has a Cu spacer to lower the free layer damping constant. A high annealing temperature of 360° C. is used to increase the MR ratio above 100%. A Jc0 of less than 1×106 A/cm2 is expected based on quasistatic measurements of a MTJ with a similar MgO tunnel barrier and composite free layer.
Abstract:
A structure and method is described for an adaptive reference used in reading magnetic tunneling memory cells. A collection of magnetic tunneling memory cells are used to form a reference circuit and are coupled in parallel between circuit ground and a reference input to a sense amplifier. Each of the magnetic memory cells used to form the reference circuit are programmed to a magnetic parallel state or a magnetic anti-parallel state, wherein each different state produces a different resistance. By varying the number of parallel states in comparison to the anti-parallel states, where each of the two sates produce a different resistance, the value of the reference circuit resistance can be adjusted to adapt to the resistance characteristics of a magnetic memory data cell to produce a more reliable read of the data programmed into the magnetic memory data cell.
Abstract:
A main package includes a plurality of stacked semiconductor chips and a plurality of first terminals associated with different ones of the semiconductor chips. An additional package includes an additional semiconductor chip and at least one second terminal electrically connected to the additional semiconductor chip. The additional semiconductor chip is to substitute for one of the plurality of semiconductor chips in the main package. The main package and the additional package are arranged in one of a plurality of relative positional relationships that is selected according to which one of the plurality of semiconductor chips in the main package is to be substituted with the additional semiconductor chip.
Abstract:
A method of manufacturing a plasmon generator includes the steps of: forming an etching mask on a dielectric layer; forming an accommodation part by etching the dielectric layer using the etching mask; and forming the plasmon generator to be accommodated in the accommodation part. The step of forming the etching mask includes the steps of: forming a patterned layer on an etching mask material layer, the patterned layer having a first opening that has a sidewall; forming a structure by forming an adhesion film on the sidewall, the structure having a second opening smaller than the first opening; and etching a portion of the etching mask material layer exposed from the second opening.