Abstract:
The present invention relates to a water softening device including: a resin chamber which has an ion exchange resin and softens hard water passing through the ion exchange resin; and electrodes which are arranged by placing the resin chamber therebetween and apply voltages to the resin chamber so as to soften the hard water, and which regenerates the ion exchange resin, wherein the ion exchange resin is a slightly acidic cation exchange resin and/or a weakly alkaline anion exchange resin. The present invention provides the water softening device capable of easily regenerating the ion exchange resin and repeating the softening-regenerating without using chemicals or the like while maintaining the performance of softening water, thereby enabling a continuous use thereof.
Abstract:
A system and method for providing mobile or temporary water treatment involving ion exchange resins includes a service centre, one or more treatment vehicles, a resin transfer hub and one or more resin transport vehicles. The service centre can be used to regenerate one or more types of ion exchange resins. The treatment vehicle carries water treatment equipment including a tank holding ion exchange resin. The resin transfer hub facilitates moving resin between a treatment vehicle and a resin transport vehicle. The resin transport vehicle is adapted for carrying resin by one or more of land, sea and air between the resin forwarding centre and the service centre. In operation, a treatment vehicle brings resin requiring regeneration to the resin transfer hub, where it is emptied and then re-filled with regenerated resin. Resin requiring regeneration is transferred to a resin transport vehicle for transport to the service centre. The resin transport vehicle is re-filled there with regenerated resin, which is taken back to the resin transfer hub for transferred to a treatment vehicle.
Abstract:
By passing an alkali regenerating agent A through a basic anion exchange resin (3), and through a strongly acidic cation exchange resin (4), the basic anion exchange resin can be regenerated while amphoteric organic materials such as the amino acids captured at the strongly acidic cation exchange resin can be desorbed. Then, an acid regenerating agent B is passed through the strongly acidic cation exchange resin to regenerate the strongly acidic cation exchange resin.
Abstract:
The mid-bed distributor of a mixed resin ion exchange demineralizer is supported on springs so that it can assume a first position during normal operations and a second predetermined position during ion bed regeneration.
Abstract:
A METHOD FOR PURIFYING, RECONDITIONING AND SEPARATING MIXTURES OF CATION EXCHANGE RESINS AND ANION EXCHANGE RESINS WHICH ARE CONTAMINATED WITH SOLID PARTICLES OF FERRIC OXIDE AND OTHER METAL OXIDES SUCH AS CUPRIC OXIDE BY CONTACTING SAID MIXTURE OF EXCHANGE RESINS WITH A REDUCING AGENT WHICH WILL REDUCE THE FERRIC OXIDE TO THE FERROUS STATE AND FORM A WATER SOLUBLE FERROUS SALT AND, IF NECESSARY, REDUCE THE CUPRIC OXIDE TO THE CORRESPONDING WATER SOLUBLE CUPROUS SALT THEREBY EASILY REMOVING SAID OXIDES. AT THE SAME TIME, THE CATION OF THE REDUCING AGENT AS WELL AS THE FERROUS ION SUBSTANTIALLY EXHAUSTS THE CATION EXCHANGE RESIN WHILE THE ANION OF THE REDUCING AGENT SUBSTANTIALLY EXHAUSTS THE ANION EXCHANGE RESIN THEREBY CREATING A SIGNIFICANT DESITY DIFFERENTIAL BETWEEN THE ANION AND CATION EXCHANGE RESIN SO THAT SAID RESINS CAN BE EASILY SEPARATED PRIOR TO REGENERATION.
Abstract:
An ion exchanger includes a sheet-shaped positive ion exchanger 2 in which binder particles 5 and positive ionic exchange resin particles 4 are mixed with each other, and a sheet-shaped porous negative ion exchanger 3 in which binder particles 7 and negative ionic exchange resin particles 6 are mixed with each other, the positive ion exchanger 2 and the negative ion exchanger 3 are bonded to each other to form an interface, and capacity of the negative ion exchanger 3 is greater than that of the positive ion exchanger 2. Therefore, the porous ion exchanger 1 is formed and absorbing ability of ion is increased, capacity of the negative ion exchanger 3 is made greater than that of the positive ion exchanger 2, regenerating ability of the ion exchanger with respect to absorbing ability of ion can be secured, and ion absorption and regeneration processing is carried out efficiently.
Abstract:
The present invention is generally directed to a versatile fluid treatment system which includes: a mobile device; a track system connected to the mobile device; one or more treatment vessels removably attached to the track system, each treatment vessel comprising a treatment material disposed inside the treatment vessel, at least one fluid inlet, and at least one fluid outlet; an input conduit that receives a fluid to be treated, the input conduit in fluid communication with the fluid inlet on the treatment vessel; and an output conduit in fluid communication with the fluid outlet on the treatment vessel, the output conduit receives treated fluid from the treatment vessels via the fluid outlet.