Abstract:
A method of forming a layout of a semiconductor device includes the following steps. First line patterns extend along a first direction in a first area and a second area, but the first line patterns extend along a second direction in a boundary area. Second line patterns extend along a third direction in the first area and the second area, but the second line patterns extend along a fourth direction in the boundary area, so that minimum distances between overlapping areas of the first line patterns and the second line patterns in the boundary area are larger than minimum distances between overlapping areas of the first line patterns and the second line patterns in the first area and the second area. A trimming process is performed to shade the first line patterns and the second line patterns in the boundary area and the second area.
Abstract:
A semiconductor processing method is provided and includes the following steps. A first semiconductor process is performed for a wafer to obtain plural overlay datum (x, y), wherein x and y are respectively shift values in X-direction and Y-direction. Next, A re-correct process is performed by a computer, wherein the re-correct process comprises: (a) providing an overlay tolerance value (A, B) and an original out of specification value (OOS %), wherein A and B are respectively predetermined tolerance values in X-direction and Y-direction; (b) providing at least a k value (kx, ky); (c) modifying the overlay datum (x, y) according to the k value (kx, ky) to obtain at least a revised overlay datum (x′, y′) ; and (d) calculating a process parameter from the revised overlay datum (x′, y′). Lastly, a second semiconductor process is performed according to the process parameter . . . . The present invention further provides a lithography system.
Abstract:
A semiconductor pattern for monitoring overlay and critical dimension at post-etching stage is provided in the present invention, which include a first inverted-T shaped pattern with a base portion and a middle portion extending from the base portion and a second pattern adjacent and spaced apart from the base portion of the first inverted-T shaped pattern, wherein the first inverted-T shaped pattern and the second pattern are composed of a plurality of spacer patterns spaced apart from each other.
Abstract:
A method of forming a layout of a semiconductor device includes the following steps. First line patterns extend along a first direction in a first area and a second area, but the first line patterns extend along a second direction in a boundary area. Second line patterns extend along a third direction in the first area and the second area, but the second line patterns extend along a fourth direction in the boundary area, so that minimum distances between overlapping areas of the first line patterns and the second line patterns in the boundary area are larger than minimum distances between overlapping areas of the first line patterns and the second line patterns in the first area and the second area. A trimming process is performed to shade the first line patterns and the second line patterns in the boundary area and the second area.
Abstract:
A semiconductor structure is disclosed. The semiconductor structure includes a substrate having a scribe line region. A material layer is formed on the scribe line region and has a rectangular region defined therein. The rectangular region has a pair of first edges parallel with a widthwise direction of the scribe line region and a pair of second edges parallel with a lengthwise direction of the scribe line region. A pair of first alignment features is formed in the material layer along the first edges, and a pair of second alignment features is formed in the material layer along the second edges. The space between the pair of first alignment features is larger than a space between the pair of the second alignment features.
Abstract:
A semiconductor pattern for monitoring overlay and critical dimension at post-etching stage is provided in the present invention, which include a first inverted-T shaped pattern with a base portion and a middle portion extending from the base portion and a second pattern adjacent and spaced apart from the base portion of the first inverted-T shaped pattern, wherein the first inverted-T shaped pattern and the second pattern are composed of a plurality of spacer patterns spaced apart from each other.
Abstract:
A method of forming an integrated circuit includes the following steps. A substrate including a plurality of exposure fields is provided, and each of the exposure field includes a target portion and a set of alignment marks. Measure the set of alignment marks of each exposure field by a measuring system to obtain alignment data for the respective exposure field. Determine an exposure parameter corresponding to each exposure field and an exposure location on the target portion from the alignment data for the respective exposure field by a calculating system. Feedback the alignment data to a next substrate.
Abstract:
A method of forming an integrated circuit includes the following steps. A substrate including a plurality of exposure fields is provided, and each of the exposure field includes a target portion and a set of alignment marks. Measure the set of alignment marks of each exposure field by a measuring system to obtain alignment data for the respective exposure field. Determine an exposure parameter corresponding to each exposure field and an exposure location on the target portion from the alignment data for the respective exposure field by a calculating system. Feedback the alignment data to a next substrate.
Abstract:
An overlay mark for determining the alignment between two separately generated patterns formed along with two successive layers above a substrate is provided in the present invention, wherein both the substrate and the overlay mark include at least two pattern zones having periodic structures with different orientations, and the periodic structures of the overlay mark are orthogonally overlapped with the periodic structures of the substrate.
Abstract:
A method of correcting an overlay error includes the following steps. First, an overlay mark disposed on a substrate is captured so as to generate overlay mark information. The overlay mark includes at least a pair of first mark patterns and at least a second mark pattern above the first mark patterns. Then, the overlay mark information is calculated to generate an offset value between two first mark patterns and to generate a shift value between the second mark pattern and one of the first mark patterns. Finally, the offset value is used to compensate the shift value so as to generate an amended shift value.