Abstract:
Disclosed herein are a movable object and a movable object control method. The movable object control method may include acquiring an image of a movable object's surroundings, acquiring a signal having strength changing depending on a location of the movable object, generating a map on the basis of the signal and the image of the surroundings of the movable object, and applying the map to an algorithm to acquire a learned algorithm.
Abstract:
Surgical trocars, and image acquisition method using the same, include a body having a passage configured to receive at least one surgical instrument, and at least one camera movably coupled to an outer wall of the body.
Abstract:
A cleaning robot includes a data acquisition unit that acquires actual sensor data by measuring a distance from a current position to an object to be measured; a local map acquisition unit that acquires a local map by scanning the vicinity of the current position based on an environmental map stored in advance; and a processor that determines coordinates of the current position for the local map by performing matching between the local map and the actual sensor data, and determines a traveling direction based on the current position by calculating a main segment angle of a line segment existing in the local map.
Abstract:
Data matching includes receiving a piece of first relational data and a piece of second relational data. The piece of first relational data is associated with a plurality of pieces of first data, and the piece of second relational data is associated with a plurality of pieces of second data. An approximate value of the piece of second relational data is calculated. A similarity is calculated based on the piece of first relational data and the approximate value of the piece of second relational data. A correspondence between a piece of the first data and a piece of the second data is determined based on the calculated similarity. An alignment parameter is calculated based on the determined correspondence, and a first data group including the piece of the first data is matched with a second data group including the piece of the second data based on the alignment parameter.
Abstract:
Disclosed is a user equipment (UE), cleaning robot including the same, and method for controlling the cleaning robot, which is intended for a cleaning robot to move to a place where there is the user by the user transmitting a radio communication signal to the cleaning robot and the cleaning robot estimating a location from which the radio communication signal is transmitted based on attenuation ratios of signal intensities over distance. An embodiment of the cleaning robot includes a main body; a moving unit for moving the main body; a communication unit for performing wireless communication with a user equipment (UE); and a robot controller for determining a location of the UE based on intensity of a radio communication signal received by the communication unit, wherein the robot controller controls the moving unit to move the main body to the determined location of the UE once the location of the UE is determined.
Abstract:
An optical scanning probe and an apparatus to generate three-dimensional (3D) data using the same are provided. The apparatus to generate 3D data includes an optical scanning probe that scans light generated from a light emitter over an object to be measured, a distance calculation processor that calculates a distance between the optical scanning probe and the object to be measured, based on the light scanned over the object to be measured and light reflected from the object to be measured; and a depth image generation processor that generates 3D data based on a scanning direction of the optical scanning probe and the distance between the optical scanning probe and the object to be measured.
Abstract:
A robot for performing hand-eye calibration is provided. The robot includes a robot arm including a plurality of joints, a plurality of arm sections, and an end effector, a communication interface, and a control circuit. The control circuit controls the robot arm to place the external object on a worktable after the external object is grasped by the end effector, acquires coordinates of a central point of the external object in a coordinate system of the camera from an image of the external object, and calculates a calibration parameter for defining a relation between a coordinate system of the end effector and the coordinate system of the camera, based on coordinates of the end effector in a base coordinate system of the robot and coordinates of the central point of the external object in the coordinate system of the camera when the external object is placed on the worktable.
Abstract:
Disclosed herein are a mobile robot system including a server of creating and storing traveling information about moving space and a mobile robot of travelling on the moving space, wherein the mobile robot comprises a driving portion configured to move the mobile robot, a communication device configured to receive the traveling information from the server and a controller configured to control the driving portion based on the traveling information received from the communication device and wherein the server receives information about the moving space from at least one external robot, and creates the traveling information based on the information about the moving space.Disclosed herein are a mobile robot system and a mobile robot capable of receiving information about moving space received from another mobile robot from an external server, and then performing deep learning based on the information about the moving space so as to travel safely and flexibly in various environments.
Abstract:
Embodiments of the present disclosure relate to a robot cleaner and a control method of the robot cleaner, more particularly, to a robot cleaner configured to correct position information of the robot cleaner by acquiring a position of a docking station during the robot clear drives and to correct a map by using corrected position information, and a control method of the robot cleaner.
Abstract:
Embodiments of the present disclosure relate to a movable object and a method for controlling the same. A method for controlling a movable object may include acquiring virtual data representing distances between each of a plurality of positions within an area and surfaces in the area, in a plurality of directions, respectively, based on a map of the area. An algorithm, such as a machine learning algorithm, may be executed that outputs positions corresponding to the virtual data. Actual distance data between the movable object and a plurality of surfaces in the vicinity of the movable object may be acquired. An actual position of the movable object may then be estimated corresponding to the actual distance data by executing the algorithm using the actual distance data. The movable object may be controlled based on the estimated actual position.