Abstract:
The present disclosure provides various embodiments of a via structure and method of manufacturing same. In an example, a method for forming a via structure includes forming a via in a semiconductor substrate, wherein via sidewalls of the via are defined by the semiconductor substrate; forming a dielectric layer on the via sidewalls; removing the dielectric layer from a portion of the via sidewalls; and forming a conductive layer to fill the via, wherein the conductive layer is disposed over the dielectric layer and the portion of the via sidewalls. In an example, the dielectric layer is an oxide layer.
Abstract:
A semiconductor device includes a substrate wafer, a dielectric layer overlying the substrate wafer, a patterned conductor layer in the dielectric layer, and a first barrier layer overlying the conductor layer. A silicon top wafer is bonded to the dielectric layer. A via is formed through the top wafer and a portion of the dielectric layer to the first barrier layer. A sidewall dielectric layer is formed along inner walls of the via, adjacent the top wafer to a distance below an upper surface of the top wafer, forming a sidewall dielectric layer shoulder. A sidewall barrier layer is formed inward of the sidewall dielectric layer, lining the via from the first barrier layer to the upper surface of the top wafer. A conductive layer fills the via and a top barrier layer is formed on the conductive layer, the sidewall barrier layer, and the top wafer.
Abstract:
A method and incorporated hybrid air and liquid cooled module for cooling electronic components of a computing system is disclosed. The module is used for cooling electronic components and comprise a closed loop liquid cooled assembly in thermal communication with an air cooled assembly, such that the air cooled assembly is at least partially included in the liquid cooled assembly.
Abstract:
Cooling apparatuses and methods are provided for cooling an assembly including a planar support structure supporting multiple electronics components. The cooling apparatus includes: multiple discrete cold plates, each having a coolant inlet, coolant outlet and at least one coolant carrying channel disposed therebetween; and a manifold for distributing coolant to and exhausting coolant from the cold plates. The cooling apparatus also includes multiple flexible hoses connecting the coolant inlets of the cold plates to the manifold, as well as the coolant outlets to the manifold, with each hose segment being disposed between a respective cold plate and the manifold. A biasing mechanism biases the cold plates away from the manifold and towards the electronics components, and at least one fastener secures the manifold to the support structure, compressing the biasing mechanism, and thereby forcing the parallel coupled cold plates towards their respective electronics components to ensure good thermal interface.
Abstract:
Apparatus and method are provided for facilitating cooling of an electronics rack employing a closed loop heat exchange system. The closed loop heat exchange system includes a first heat exchanger, a second heat exchanger, and a coolant distribution loop connecting the first heat exchanger and the second heat exchanger. When operational, the coolant distribution loop allows coolant to circulate between the first heat exchanger and the second heat exchanger. The closed loop heat exchange system couples to the electronics rack with the first heat exchanger disposed at an air inlet side of the electronics rack, and the first heat exchanger and the second heat exchanger disposed in different inlet-to-outlet air flow paths through the electronics rack to reduce an imbalance in air flow temperature of the different inlet-to-outlet air flow paths through the electronics rack.
Abstract:
An isolation valve assembly, a coolant connect/disconnect assembly, a cooled multi-blade electronics center, and methods of fabrication thereof are provided employing an isolation valve and actuation mechanism. The isolation valve is disposed within at least one of a coolant supply or return line providing liquid coolant to the electronics subsystem. The actuation member is coupled to the isolation valve to automatically translate a linear motion, resulting from insertion of the electronics subsystem into the operational position within the electronics housing, into a rotational motion to open the isolation valve and allow coolant to pass. The actuation mechanism, which operates to automatically close the isolation valve when the liquid cooled electronics subsystem is withdrawn from the operational position, can be employed in combination with a compression valve coupling, with one fitting of the compression valve coupling being disposed serially in fluid communication with the isolation valve.
Abstract:
Provided is a wafer level packaging. The packaging includes a first semiconductor wafer having a transistor device and a first bonding layer that includes a first material. The packaging includes a second semiconductor wafer having a second bonding layer that includes a second material different from the first material, one of the first and second materials being aluminum-based, and the other thereof being titanium-based. Wherein a portion of the second wafer is diffusively bonded to the first wafer through the first and second bonding layers.
Abstract:
An isolation valve assembly, a coolant connect/disconnect assembly, a cooled multi-blade electronics center, and methods of fabrication thereof are provided employing an isolation valve and actuation mechanism. The isolation valve is disposed within at least one of a coolant supply or return line providing liquid coolant to the electronics subsystem. The actuation member is coupled to the isolation valve to automatically translate a linear motion, resulting from insertion of the electronics subsystem into the operational position within the electronics housing, into a rotational motion to open the isolation valve and allow coolant to pass. The actuation mechanism, which operates to automatically close the isolation valve when the liquid cooled electronics subsystem is withdrawn from the operational position, can be employed in combination with a compression valve coupling, with one fitting of the compression valve coupling being disposed serially in fluid communication with the isolation valve.
Abstract:
A thermally conductive composite interface and methods of fabrication are provided for coupling a cooling assembly and at least one electronic device. The interface includes a plurality of thermally conductive contacts for mechanically coupling the cooling assembly and electronic device, and an adhesive material at least partially surrounding the thermally conductive contacts. The thermally conductive contacts are made of a first material, which has a first thermal conductivity, and the adhesive material is a second material, which has a second thermal conductivity, with the first thermal conductivity being greater than the second thermal conductivity. The adhesive material rigidly bonds the cooling assembly and the at least one electronic device together, thereby relieving strain on the plurality of thermally conductive contacts resulting from a coefficient of thermal expansion mismatch between the cooling assembly and the at least one electronic device.
Abstract:
An electronic device cooling assembly and fabrication method are provided which include a manifold with an orifice for injecting a cooling liquid onto a surface to be cooled, and an elastic pin support material with an opening aligned to the orifice of the manifold. Multiple thermally conductive pins are mounted within the support material, extending therefrom, and are sized to physically contact the surface to be cooled. The support material has a thickness and compliance which facilitates thermal interfacing of the pins to the surface by allowing second ends thereof to move vertically and tilt. The second end of each pin has a planar surface which is normal to an axis of the pin, and the support material facilitates the planar surfaces of the second pin ends establishing planar contact with the surface to be cooled, notwithstanding that the surface may be other than planar.