Abstract:
Techniques for increasing the lifespan of a nanopore DNA sensing device are disclosed. A related method may include forming a first electrode, forming a second electrode, disposing the first electrode and second electrode within an insulator, and disposing a lipid bilayer having a nanopore between the first electrode and second electrode. The forming of the second electrode may comprise forming a silver (Ag) layer, pressing a mold into the Ag layer to form a pattern in the Ag layer, removing the mold from the Ag layer, and exposing the Ag layer to an electrolyte.
Abstract:
A low-power state current/power consumption for each volatile memory device in a plurality of volatile memory devices is obtained. Data is copied from a first set of the volatile memory devices to a second set of the volatile memory devices, where the second set of volatile memory devices has a lower current/power consumption than the first set of volatile memory devices. Additionally, a current/power consumption may be obtained for each memory bank within each of the plurality of volatile memory devices. Data is then copied from a first set of memory banks to a second set of memory banks within the same memory device in the second set of memory devices, where the second set of memory banks has lower current/power consumption than the first set of memory banks. The first set of volatile memory devices and/or first set of memory banks are then placed into a power-down state.
Abstract:
Laser annealing methods for integrated circuits (IC) are disclosed. In particular, an upper surface of an integrated circuit is annealed with a laser using a brief burst of light from the laser. In an exemplary embodiment, the brief burst of light from the laser lasts approximately fifty (50) to five hundred (500) microseconds. This brief burst will raise the temperature of the surface to approximately 1200° C.
Abstract:
In certain aspects, an integrated circuit comprises a first standard cell having a height equal to a cell height, wherein the first standard cell comprises a first dielectric material in a first layer. The integrated circuit comprises a second standard cell having a height equal to the cell height and aligning with the first standard cell, wherein the second standard cell comprises the first dielectric material in the first layer. The integrated circuit further comprises a first thermal cell having a height equal to the cell height and aligning with and abutting to both the first standard cell and the second standard cell; and wherein the first thermal cell comprises a second dielectric material in the first layer having a higher thermal conductivity than that of the first dielectric material.
Abstract:
A microelectromechanical system (MEMS) bond release structure is provided for manufacturing of three-dimensional integrated circuit (3D IC) devices with two or more tiers. The MEMS bond release structure includes a MEMS sacrificial release layer which may have a pillar or post structure, or alternatively, a continuous sacrificial layer for bonding and release.
Abstract:
A low-power state current/power consumption for each volatile memory device in a plurality of volatile memory devices is obtained. Data is copied from a first set of the volatile memory devices to a second set of the volatile memory devices, where the second set of volatile memory devices has a lower current/power consumption than the first set of volatile memory devices. Additionally, a current/power consumption may be obtained for each memory bank within each of the plurality of volatile memory devices. Data is then copied from a first set of memory banks to a second set of memory banks within the same memory device in the second set of memory devices, where the second set of memory banks has lower current/power consumption than the first set of memory banks. The first set of volatile memory devices and/or first set of memory banks are then placed into a power-down state.
Abstract:
The disclosure generally relates to a deoxyribonucleic acid (DNA) sequencing circuit having a controllable pore size and a lower membrane capacitance and noise floor relative to biological nanopore devices. For example, design principles used to fabricate a fin-shaped field effect transistor (FinFET) may be applied to form, on a first wafer, a nanopore that has a desired pore size in a silicon-based membrane. Electrodes and an interconnect embedded with an amplifier and analog-to-digital converter (ADC) may be formed on a separate second wafer, wherein the first wafer and the second wafer may then be bonded and further processed to form a sensing device that includes appropriate wells and pores to be used in a DNA sequencing circuit.
Abstract:
Techniques for increasing the lifespan of a nanopore DNA sensing device are disclosed. A related DNA sensing device may be formed by a process comprising forming a first electrode, forming a second electrode, disposing the first electrode and second electrode within an insulator, and disposing a lipid bilayer having a nanopore between the first electrode and second electrode. The forming of the second electrode may comprise forming a silver (Ag) layer, pressing a mold into the Ag layer to form a pattern in the Ag layer, removing the mold from the Ag layer, and exposing the Ag layer to an electrolyte.
Abstract:
A low-power state current/power consumption for each volatile memory device in a plurality of volatile memory devices is obtained. Data is copied from a first set of the volatile memory devices to a second set of the volatile memory devices, where the second set of volatile memory devices has a lower current/power consumption than the first set of volatile memory devices. Additionally, a current/power consumption may be obtained for each memory bank within each of the plurality of volatile memory devices. Data is then copied from a first set of memory banks to a second set of memory banks within the same memory device in the second set of memory devices, where the second set of memory banks has lower current/power consumption than the first set of memory banks. The first set of volatile memory devices and/or first set of memory banks are then placed into a power-down state.
Abstract:
Transistors with improved thermal conductivity are disclosed. Portions of the transistor or elements adjacent to the transistor are made from materials that are electrically insulative, but have high thermal conductivities. Increased thermal conductivity provides increased heat dissipation from the transistor, which results in less resistance and less power consumption, which in turns generally improves performance. For example, in a first non-limiting exemplary aspect, the material that can be included for electrical insulation, but having high thermal conductivity for increased heat dissipation is Beryllium Oxide (BeO). In a second non-limiting exemplary aspect, the material that can be included for electrical insulation, but having high thermal conductivity for increased heat dissipation is Aluminum Nitride (AlN).