Abstract:
An apparatus comprises a substrate. The apparatus also comprises a diffusion barrier formed on a surface of a first region of the substrate. The diffusion barrier is formed using a first material having a first band gap energy. The apparatus further comprises a channel region formed on a surface of the diffusion barrier. The channel region is formed using a second material having a second band gap energy that is lower than the first band gap energy. The apparatus further comprises a back gate contact coupled to the first region of the substrate.
Abstract:
A metal-insulator-metal (MIM) capacitor reduces a number of masks and processing steps compared to conventional techniques. A first conductive layer of a MIM capacitor is deposited on a semiconductor chip and patterned using a MIM conductive layer mask. A conductive redistribution layer (RDL) is patterned over the MIM dielectric layer. The conductive redistribution layer includes two RDL nodes that overlap the first conductive layer of the MIM capacitor. A conductive via or bump extends through the MIM dielectric layer and couples one of the RDL nodes to the first conductive layer of the MIM capacitor.
Abstract:
A method for fabricating a metal-insulator-metal (MIM) capacitor includes depositing a first middle of line (MOL) conductive layer over a shallow trench isolation (STI) region of a semiconductor substrate. The first MOL conductive layer provides a first plate of the MIM capacitor as well as a first set of local interconnects to source and drain regions of a semiconductor device. The method also includes depositing an insulator layer on the first MOL conductive layer as a dielectric layer of the MIM capacitor. The method further includes depositing a second MOL conductive layer on the insulator layer as a second plate of the MIM capacitor.
Abstract:
A complementary back end of line (BEOL) capacitor (CBC) structure includes a metal oxide metal (MOM) capacitor structure. The MOM capacitor structure is coupled to a first upper interconnect layer of an interconnect stack of an integrated circuit (IC) device. The MOM capacitor structure includes at least one lower interconnect layer of the interconnect stack. The CBC structure may also include a second upper interconnect layer of the interconnect stack coupled to the MOM capacitor structure. The CBC structure also includes at least one metal insulator metal (MIM) capacitor layer between the first upper interconnect layer and the second upper interconnect layer. In addition, CBC structure may also include a MIM capacitor structure coupled to the MOM capacitor structure. The MIM capacitor structure includes a first capacitor plate having at least a portion of the first upper interconnect layer, and a second capacitor plate having at least a portion of the MIM capacitor layer(s).
Abstract:
A method for fabricating a metal-insulator-metal (MIM) capacito includes depositing a first middle of line (MOL) conductive layer over a shallow trench isolation (STI) region of a semiconductor substrate. The first MOL conductive layer provides a first plate of the MIM capacitor as well as a first set of local interconnects to source and drain regions of a semiconductor device. The method also includes depositing an insulator layer on the first MOL conductive layer as a dielectric layer of the MIM capacitor. The method further includes depositing a second MOL, conductive layer on the insulator layer as a second plate of the MIM capacitor.
Abstract:
An orthogonal finger capacitor includes a layer having an anode bone frame adjacent a cathode bone frame, the anode bone frame having a first portion extending along an axis and a second portion extending perpendicular to the axis. A set of anode fingers extends from the first portion. A set of cathode fingers extends from the cathode bone frame, interdigitated with the set of anode fingers. An overlaying layer has another anode bone frame having a first portion parallel to the axis and a perpendicular second portion. A via couples the overlaying anode bone frame to the underlying anode bone frame. The via is located where the first portion of the overlaying anode bone frame overlaps the second portion of the underlying anode bone frame or, optionally, where the second portion of the overlying anode bone frame overlaps the first portion of the underlying anode bone frame.
Abstract:
A method for fabricating a metal-insulator-metal (MIM) capacito includes depositing a first middle of line (MOL) conductive layer over a shallow trench isolation (STI) region of a semiconductor substrate. The first MOL conductive layer provides a first plate of the MIM capacitor as well as a first set of local interconnects to source and drain regions of a semiconductor device. The method also includes depositing an insulator layer on the first MOL conductive layer as a dielectric layer of the MIM capacitor. The method further includes depositing a second MOL conductive layer on the insulator layer as a second plate of the MIM capacitor.
Abstract:
An apparatus comprises a first fin field effect transistor (FinFET) device extending from a surface of a first etch stop layer. The apparatus also comprises a second FinFET device extending from a surface of a second etch stop layer. A first compound layer is interposed between the first etch stop layer and the second etch stop layer.
Abstract:
A method of fabricating a metal-insulator-metal (MIM) capacitor reduces the number of masks and processing steps compared to conventional techniques. A conductive redistribution layer (RDL) is patterned on a semiconductor chip. A MIM dielectric layer is deposited over the RDL. A first conductive layer of a MIM capacitor is deposited over the MIM dielectric layer. The MIM dielectric layer is patterned using a MIM conductive layer mask. The conductive redistribution layer includes two RDL nodes that extend under the first conductive layer of the MIM capacitor. A conductive via or bump extends through the MIM dielectric layer and couples one of the RDL nodes to the first conductive layer of the MIM capacitor.
Abstract:
In a particular embodiment, a method includes removing a first portion of an optical planarization layer using a lithographic mask to expose a region of the optical planarization layer. A resistive layer is formed at least partially within the region. The method further includes removing at least a second portion of the optical planarization layer and at least a third portion of the resistive layer to form a resistor.