Abstract:
Certain aspects provide a circuit for analog-to-digital conversion. The circuit generally includes a flash analog-to-digital converter (ADC) having a plurality of comparators, each comparator being configured to compare an input voltage to a reference voltage; and a calibration circuit coupled to the flash ADC and configured to tune the reference voltage prior to a conversion operation by the flash ADC.
Abstract:
Methods and apparatus for digitally controlling a common-mode voltage of a comparator. An example comparator circuit generally includes a first comparator and a sensing circuit configured to digitally track a common-mode voltage of the first comparator. The comparator circuit may further include a first capacitive array having a common terminal coupled to a first input of the first comparator and selectively coupled to an input of the sensing circuit. The comparator circuit may further include a second capacitive array having a common terminal coupled to a second input of the first comparator and selectively coupled to the input of the sensing circuit.
Abstract:
In one embodiment, a circuit includes a first input of a comparator for an analog to digital converter (ADC). The first input is coupled to a first capacitive network. The circuit further includes a second input of the comparator for the ADC. The second input is coupled to a second capacitive network. The first capacitive network includes a first set of capacitors where a first plate of the first set of capacitors is selectively coupled to an input signal. The second capacitive network includes a second set of capacitors where a second plate of the first set of capacitors is selectively coupled to the input signal. The first plate and the second plate are opposite plates of the first set of capacitors and the second set of capacitors.
Abstract:
In one embodiment, a circuit includes a first input of a comparator for an analog to digital converter (ADC). The first input is coupled to a first capacitive network. The circuit further includes a second input of the comparator for the ADC. The second input is coupled to a second capacitive network. The first capacitive network includes a first set of capacitors where a first plate of the first set of capacitors is selectively coupled to an input signal. The second capacitive network includes a second set of capacitors where a second plate of the first set of capacitors is selectively coupled to the input signal. The first plate and the second plate are opposite plates of the first set of capacitors and the second set of capacitors.
Abstract:
Methods and apparatus for noise shaping in multi-stage analog-to-digital converters (ADCs). An example ADC generally includes a first conversion stage having a residue output; an amplifier having an input selectively coupled to the residue output of the first conversion stage; a second conversion stage having an input selectively coupled to an output of the amplifier; and a switched-capacitor network having a first port coupled to the input of the amplifier and having a second port coupled to the input of the second conversion stage, the switched-capacitor network being configured to provide a second-order or higher noise transfer function for noise shaping of quantization noise of the second conversion stage.
Abstract:
An apparatus is disclosed for gain stabilization. In an example aspect, the apparatus includes an amplifier and a gain-stabilization circuit. The amplifier has a gain that is based on a bias voltage and an amplification control signal. The gain- stabilization circuit is coupled to the amplifier and includes a replica amplifier. The replica amplifier has a replica gain that is based on the bias voltage and the amplification control signal. The gain-stabilization circuit is configured to adjust at least one of the bias voltage or the amplification control signal based on a gain error associated with the replica amplifier.
Abstract:
An apparatus for generating a substantially constant DC reference voltage. The apparatus includes a reference voltage generator configured to generate a substantially constant direct current (DC) reference voltage based on a voltage on a data signal transmission line, wherein the voltage is based on a bandgap reference voltage. In one implementation, the data signal transmission line is a differential signal transmission line and the voltage is a common mode voltage. In another implementation, the data signal transmission line is an I-data signal transmission line and a Q-data signal transmission line, and the voltage is an average or weighted-average of the common mode voltages of the I- and Q-differential signals. In another implementation, the reference voltage is based on a single-ended (e.g., positive- and/or negative)-component or vice-versa of I- and Q-data signals, respectively.
Abstract:
Multi-channel receiver circuits implemented with time-multiplexed successive approximation register (SAR) analog-to-digital converter (ADC) circuits and methods for operating such receiver circuits are disclosed. One example receiver circuit generally includes a first multiplexer having a plurality of inputs coupled to a plurality of in-phase (I) receive paths associated with different channels of the receiver circuit, a first SAR ADC circuit having an input coupled to an output of the first multiplexer, a second multiplexer having a plurality of inputs coupled to a plurality of quadrature (Q) receive paths associated with the different channels of the receiver circuit, and a second SAR ADC circuit having an input coupled to an output of the second multiplexer.
Abstract:
In one embodiment, a method for generating a reference comprises generating a current that is approximately temperature independent over a temperature range based on an emitter-base voltage of a first bipolar junction transistor (BJT), and generating a first proportional to absolute temperature (PTAT) current based on the emitter-base voltage of the first BJT.
Abstract:
An apparatus is disclosed for gain stabilization. In an example aspect, the apparatus includes an amplifier and a gain-stabilization circuit. The amplifier has a gain that is based on a bias voltage and an amplification control signal. The gain-stabilization circuit is coupled to the amplifier and includes a replica amplifier. The replica amplifier has a replica gain that is based on the bias voltage and the amplification control signal. The gain-stabilization circuit is configured to adjust at least one of the bias voltage or the amplification control signal based on a gain error associated with the replica amplifier.