Abstract:
A method for using a first device to pair a second device to a user account may include receiving first wireless communications using a first wireless protocol, where the first device has previously been paired with the user account. The method may also include receiving a transmission that instructs the first device to establish second wireless communications with the second device, and then establishing the second wireless communications between the first device and the second device using a second wireless protocol. The method may additionally include receiving, using the first wireless protocol, information allowing the second device to use the first wireless protocol, and sending the information to the second device using the second wireless protocol, where a new pairing between the second device and the user account is established using the first wireless protocol.
Abstract:
A thermostat user interface for a network-connected thermostat is described. The thermostat includes a frustum-shaped shell body having a circular cross-section and a sidewall extending between first and second ends, the second end being user-facing when the thermostat is wall-mounted; a circular rotatable ring being user rotatable for adjusting a setting of the thermostat; and a circular cover including a clear circular center portion surrounded by a painted outer portion. The clear circular center portion permits a corresponding circular portion of a non-circular dot-matrix color display element to be visible through the circular cover and the painted outer portion masks a remaining portion of the non-circular dot-matrix color display element so as to create a circular graphical user interface.
Abstract:
include using an application on a mobile device to establish first wireless communications with a first hazard detector that was previously paired with the user account. The method may also include transmitting, to the first hazard detector and using the first wireless protocol, a transmission that instructs the first hazard detector to establish second wireless communications with a second hazard detector, where the second wireless communications use a second wireless protocol. The method may additionally include transmitting network credentials to the first hazard detector using the first wireless protocol, where the credentials are then sent from the first hazard detector to the second hazard detector using the second wireless protocol, such that the second hazard detector can pair with the user account using the first wireless protocol.
Abstract:
A thermostat stand for a thermostat device may include a base and a mounting fixture configured to receive a thermostat device. The thermostat stand may additionally include an opening configured to allow one or more wires to pass through the opening to connect to the thermostat device, the one or more wires originating from either a power supply or from the boiler control device. The thermostat stand may further include a reflective horizontal surface positioned such that motion detection of energy-emitting objects is enhanced by virtue of reflections of energy emissions off of the reflective horizontal surface into the occupancy sensor.
Abstract:
A method for establishing a pairing between a smart-home device and an online account may include instantiating an application on a computing device and receiving a first code from a central server. The application may receive a second code from printed material associated with the smart-home device. The smart-home device may broadcast a first communication protocol, and the application may join the first mutation protocol. The application can be authenticated by the smart-home device using the second code, and the application can receive an identity of a second communication protocol from a user. The application can then transmit the identity of the second communication protocol to the smart-home device. The smart-home device can use the second mutation protocol to access the Internet and transmit the first code to the central server, where the central server can use the first code in completing the pairing process.
Abstract:
Provided according to one or more embodiments is a thermostat having a housing, the housing including a forward-facing surface, the thermostat comprising a passive infrared (PIR) motion sensor disposed inside the housing for sensing occupancy in the vicinity of the thermostat. The PIR motion sensor has a radiation receiving surface and is able to detect the lateral movement of an occupant in front of the forward-facing surface of the housing. The thermostat further comprises a grille member having one or more openings and included along the forward-facing surface of the housing, the grille member being placed over the radiation receiving surface of the PIR motion sensor. The grille member is configured and dimensioned to visually conceal and protect the PIR motion sensor disposed inside the housing, the visual concealment promoting a visually pleasing quality of the thermostat, while at the same time permitting the PIR motion sensor to effectively detect the lateral movement of the occupant. In one embodiment, the grille member openings are slit-like openings oriented along a substantially horizontal direction.
Abstract:
A user-friendly, network-connected learning thermostat is described. The thermostat is made up of (1) a wall-mountable backplate that includes a low-power consuming microcontroller used for activities such as polling sensors and switching on and off the HVAC functions, and (2) separable head unit that includes a higher-power consuming microprocessor, color LCD backlit display, user input devices, and wireless communications modules. The thermostat also includes a rechargeable battery and power-stealing circuitry adapted to harvest power from HVAC triggering circuits. By maintaining the microprocessor in a “sleep” state often compared to the lower-power microcontroller, high-power consuming activities, such as learning computations, wireless network communications and interfacing with a user, can be temporarily performed by the microprocessor even though the activities use energy at a greater rate than is available from the power stealing circuitry.
Abstract:
An occupancy sensing electronic thermostat is described that includes a thermostat body, an electronic display that is viewable by a user in front of the thermostat, a passive infrared sensor for measuring infrared energy and an infrared energy directing element formed integrally with a front surface of the thermostat body. The passive infrared sensor may be positioned behind the infrared energy directing element such that infrared energy is directed thereonto by the infrared energy directing element. The thermostat may also include a temperature sensor and a microprocessor programmed to detect occupancy based on measurements from the passive infrared sensor.
Abstract:
A method for establishing a pairing between a smart-home device and an online account may include instantiating an application on a computing device and receiving a first code from a central server. The application may receive a second code from printed material associated with the smart-home device. The smart-home device may broadcast a first communication protocol, and the application may join the first mutation protocol. The application can be authenticated by the smart-home device using the second code, and the application can receive an identity of a second communication protocol from a user. The application can then transmit the identity of the second communication protocol to the smart-home device. The smart-home device can use the second mutation protocol to access the Internet and transmit the first code to the central server, where the central server can use the first code in completing the pairing process.
Abstract:
Provided according to one or more embodiments is a thermostat having a housing, the housing including a forward-facing surface, the thermostat comprising a passive infrared (PIR) motion sensor disposed inside the housing for sensing occupancy in the vicinity of the thermostat. The PIR motion sensor has a radiation receiving surface and is able to detect the lateral movement of an occupant in front of the forward-facing surface of the housing. The thermostat further comprises a grille member having one or more openings and included along the forward-facing surface of the housing, the grille member being placed over the radiation receiving surface of the PIR motion sensor. The grille member is configured and dimensioned to visually conceal and protect the PIR motion sensor disposed inside the housing, the visual concealment promoting a visually pleasing quality of the thermostat, while at the same time permitting the PIR motion sensor to effectively detect the lateral movement of the occupant. In one embodiment, the grille member openings are slit-like openings oriented along a substantially horizontal direction.