Abstract:
An optical element fabrication method including following steps are provided. First, a micro-lens layer including a micro-lens and a first substrate is provided. Besides, a micro optical channel layer including a micro optical channel and a second substrate is provided. A first bonding process is performed to bond the micro-lens layer to the micro optical channel layer, wherein the micro-lens is corresponded to the micro optical channel in a direction that is perpendicular to the surface of the second substrate, and the first substrate of the micro-lens layer is removed later.
Abstract:
An optical element fabrication method including following steps are provided. First, a micro-lens layer including a micro-lens and a first substrate is provided. Besides, a micro optical channel layer including a micro optical channel and a second substrate is provided. A first bonding process is performed to bond the micro-lens layer to the micro optical channel layer, wherein the micro-lens is corresponded to the micro optical channel in a direction that is perpendicular to the surface of the second substrate, and the first substrate of the micro-lens layer is removed later.
Abstract:
A manufacturing method of a multi-layer circuit board having a cavity is provided, including the following steps: a core board is provided, and a through hole is formed penetrating the core board; two build-up structures are bonded to two opposite sides of the core board to foam the multi-layer circuit board, and the two build-up structures cover the through hole; and a portion of one of the two build-up structures corresponding to the through hole is removed to make the through hole communicate with the outside and form the cavity. A multi-layer circuit board having a cavity, manufactured by the aforementioned method, is also provided.
Abstract:
A semiconductor device is provided which includes a semiconductor substrate having a first portion and a second portion, transistors formed in the first portion of the substrate, each transistor having a gate structure with a high-k dielectric and a metal gate, a device element formed in the second portion of the substrate, the device element being isolated by an isolation region, and a polishing stopper formed adjacent the isolation region and having a surface that is substantially planar with a surface of the gate structures of the transistors in the first region.
Abstract:
A memory and storage device includes a data management system for transferring data units referenced by logical addresses. The data management system maps the logical addresses to sequential virtual addresses according to the order the data units are received. The data management system also maps the sequential virtual addresses to sequential physical addresses in a memory block of a memory device. Additionally, the data management system can modify a data unit in the memory block by copying any other valid data units in the memory block to another memory block and writing the modified data unit into this other memory block. The data management system writes the valid data units and the modified data unit into sequential physical addresses of this other memory block.
Abstract:
Doped silicon carbide structures, as well as methods associated with the same, are provided. The structures, for example, are components (e.g., layer, patterned structure) in MEMS structures. The doped silicon carbide structures may be highly conductive, thus, providing low resistance to electrical current. An in-situ doping process may be used to form the structures. The process parameters can be selected so that the structures have a low residual stress and/or low strain gradient. Thus, the structures may be formed having desired dimensions with little (or no) distortion arising from residual stress and/or strain gradient. The high conductivity and mechanical integrity of the structures are significant advantages in MEMS devices such as sensors and actuators.
Abstract:
A data management for a flash memory device is disclosed. The device includes a screen virtual sector table and a virtual unit versus physical unit table (V2P table) for each block. With the auxiliary of the screen virtual sector table and v2p table, the data programming into the target block of the flash memory is in accordance with the data receiving order, which is from lower page number to higher page number in case the target block is free. The data can be written into the target block contains data already through one or two temporal block(s). The conventional LBA data transfer protocol can still be applied to the flash memory device of this invention.
Abstract:
A data management for a flash memory device is disclosed. The device includes a screen virtual sector table and a virtual unit versus physical unit table (V2P table) for each block. With the auxiliary of the screen virtual sector table and v2p table, the data programming into the target block of the flash memory is in accordance with the data receiving order, which is from lower page number to higher page number in case the target block is free. The data can be written into the target block contains data already through one or two temporal block(s). The conventional LBA data transfer protocol can still be applied to the flash memory device of this invention.