Abstract:
The present invention provides a multiplexed control system, employing a single solenoid valve, to selectively control the damper lock-out clutch and motor/generator cooling of an electronically variable hybrid transmission. The present invention also contemplates a method of selectively controlling damper lock-out clutch engagement and motor/generator cooling for an electrically variable hybrid transmission control.
Abstract:
A powertrain has an electrically variable hybrid transmission having an electro-hydraulic control system, plurality of electrical power units, and a plurality of torque transmitting mechanisms selectively engageable by the electro-hydraulic control system to provide four forward speed ranges, a neutral condition, an electric low speed mode, an electrically variable low and high speed mode, and two electrical power off drive home modes. The electro-hydraulic control system includes a multiplexed pressure switch system. The multiplexed pressure switch system of the present invention allows position detection of five torque transmitting mechanism control valves through the use of only four pressure switches.
Abstract:
A powertrain has an electrically variable hybrid transmission having an electro-hydraulic control system, plurality of electrical power units, and a plurality of torque transmitting mechanisms selectively engageable by the electro-hydraulic control system to provide four forward speed ranges, a neutral condition, an electric low speed mode, an electrically variable low and high speed mode, and two electrical power off drive home modes. The electro-hydraulic control system of the present invention has a multiplexed trim system for an electrically variable hybrid transmission. The multiplexed trim system allows engagement control of four torque transmitting mechanism and individual control of fluid flow to effect cooling of two motor/generators by multiplexing three trim valves with two logic valves.
Abstract:
The present invention provides a control system employing a single solenoid valve operable to provide a variable fluid flow to effect cooling if the motor/generator assemblies contained within an electrically variable hybrid transmission. The control system of the present invention selectively controls the cooling of at least one motor/generator assembly of an electronically variable hybrid transmission by selectively controlling valves of various types and configurations.
Abstract:
A powertrain has an electrically variable hybrid transmission having an electro-hydraulic control system, plurality of electrical power units, and a plurality of torque transmitting mechanisms selectively engageable by the electro-hydraulic control system to provide four forward speed ranges, a neutral condition, an electric low and high speed mode, an electrically variable low and high speed mode, and a hill hold mode. The electro-hydraulic control system includes a multiplexed pressure switch system. The multiplexed pressure switch system of the present invention allows position detection of six torque transmitting mechanism control valves through the use of only four pressure switches.
Abstract:
A powertrain has an electrically variable hybrid transmission having an electro-hydraulic control system, plurality of electrical power units, and a plurality of torque transmitting mechanisms selectively engageable by the electro-hydraulic control system to provide four forward speed ranges, a neutral condition, an electric low and high speed mode, and an electrically variable low and high speed mode. Additionally, the electrically variable hybrid transmission provides a parallel reverse mode and a series reverse mode. The present invention provides an improved electro-hydraulic control system having a multiplexed electronic transmission range selection (ETRS) and reverse dog clutch system for an electrically variable hybrid transmission. The multiplexed control system of the present invention allows effective control of both the ETRS system and reverse dog clutch system using only one solenoid valve.
Abstract:
A powertrain has an electrically variable hybrid transmission having an electro-hydraulic control system, plurality of electrical power units, and a plurality of torque transmitting mechanisms selectively engageable by the electro-hydraulic control system to provide four forward speed ranges, a neutral condition, an electric low and high speed mode, an electrically variable low and high speed mode, and a hill hold mode. The electro-hydraulic control system permits operation in the electrically variable low mode of operation if the electrical power is interrupted when the powertrain is operating in the first forward range, electric low speed mode, electrically variable low speed mode, and hill hold mode. Additionally, the system permits operation in the electrically variable high speed mode of operation if the electrical power is interrupted when the powertrain is operating in the second through fourth forward range, electric high speed mode, and electrically variable high speed mode.
Abstract:
An electrosurgical wand. At least some of the illustrative embodiments are electrosurgical wands including an elongate shaft that defines a handle end and a distal end, a first discharge aperture on the distal end of the elongate shaft, a first active electrode of conductive material disposed on the distal end of the elongate shaft, the first active electrode has an edge feature, a first return electrode of conductive material disposed a substantially constant distance from the first active electrode, and an aspiration aperture on the distal end of the elongate shaft fluidly coupled to a second fluid conduit.
Abstract:
A method for controlling a hydraulic flow within a powertrain comprising an electromechanical transmission mechanically-operatively coupled to an engine adapted to selectively transmit power to an output, wherein the transmission utilizes a hydraulic control system serving a number of hydraulic oil consuming functions includes monitoring minimum hydraulic pressure requirements for each of the functions, determining a requested hydraulic pressure based upon the monitoring minimum hydraulic pressure requirements and physical limits of the hydraulic control system including a maximum pressure, determining a desired flow utilizing a hydraulic control system flow model based upon the requested hydraulic pressure, and utilizing the desired flow to control an auxiliary hydraulic pump.
Abstract:
An electrically variable transmission (EVT) selectively establishes various EVT modes and a neutral mode. The EVT includes a source of pressurized fluid, fluid-actuated clutches, various solenoid-actuated valves including trim valves and blocking valves adapted to control a flow of pressurized fluid to the clutches to establish the transmission operating modes, and an electronic control unit (ECU). The ECU actuates different combinations of the solenoid-actuated valves to establish the different transmission modes. The solenoid-actuated valves are configured in such a manner as to provide the EVT with one or more default operating modes in the event the ECU temporarily loses electrical power. Depending on the particular configuration, the default modes can be the neutral mode alone, or the neutral mode combined with one or more of the EVT modes, with the EVT modes enabled by providing one or both of the blocking valves with a latching feature.