Abstract:
A voltage of a first pin that is one of several pins of an external connector of a system is measured, while the first pin is un-driven except for being pulled to ground through a first resistance, and a second pin of the external connector is being used as a power supply rail of the system. The measured voltage is compared to a short circuit threshold and in response to that threshold being exceeded, the power supply voltage on the second pin is reduced. In such an embodiment, no test stimulus needs to be applied to any of the pins of the external connector. Other embodiments are also described and claimed.
Abstract:
A case for a wireless electronic listening device (e.g., a pair of wireless earbuds) is configured to house a pair of wireless earbuds and charge the earbuds when they are in the case. The case is further configured to receive media received by the wireless earbuds and transmit the media to a non-wireless output device connected to the case. The case may further include its own wireless radio that can wirelessly communicate audio to the wireless earbuds when the earbuds are not in the case. The case may further include an input port to receive an audio signal from a non-wireless source and may be configured to wirelessly transmit the audio received from the source to the wireless earbuds.
Abstract:
Simplified interfaces for charging and communication between accessories and docking stations. One example may provide an interface for charging and communication between an accessory and docking station where data and a charging voltage are provided over the same pins. An accessory may determine that it is in a powered docking station by receiving a charging voltage. The accessory may determine that it is in an unpowered docking station by providing a voltage to the unpowered docking station, where the unpowered docking station uses the voltage to power an oscillator. The oscillator signal may be received by the accessory, which may use the presence of the signal to determine that it is in an unpowered docking station.
Abstract:
Connector systems that may facilitate the insertion of connector inserts into connector receptacles, may eliminate the need for dedicated contacts to detect a connection, and may provide connector inserts that are rotatable even when the functions of the contacts on the connector inserts are not symmetrical.
Abstract:
A headphone is disclosed herein. The headphone includes a wireless transceiver, a wired communication module, a power storage device, a speaker, and control circuitry. The wireless transceiver and the wired communication module and the wireless transceiver are connected to the speaker via the control circuitry. The control circuitry is configured to determine whether to control the speaker according to data received via the wired communication module and the wireless transceiver and to seamlessly transition control of the speaker from data received from one of the wired communication module and the wireless transceiver to the other of the wired communication module and the wireless transceiver.
Abstract:
Techniques for mounting contacts of a connector are provided. One technique involves actively and continuously monitoring contacts being used and the contacts not being used in a connector in order to determine potential dendrite growth and/or potential corrosion due to liquid intrusion or the like. Another technique includes lowering a bias voltage on a power contact and performing a system detect prior to enabling operational voltage/current on the contact.
Abstract:
Techniques for mounting contacts of a connector are provided. One technique involves actively and continuously monitoring contacts being used and the contacts not being used in a connector in order to determine potential dendrite growth and/or potential corrosion due to liquid intrusion or the like. Another technique includes lowering a bias voltage on a power contact and performing a system detect prior to enabling operational voltage/current on the contact.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
Abstract:
A voltage of a first pin that is one of several pins of an external connector of a system is measured, while the first pin is un-driven except for being pulled to ground through a first resistance, and a second pin of the external connector is being used as a power supply rail of the system. The measured voltage is compared to a short circuit threshold and in response to that threshold being exceeded, the power supply voltage on the second pin is reduced. In such an embodiment, no test stimulus needs to be applied to any of the pins of the external connector. Other embodiments are also described and claimed.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.