-
公开(公告)号:CN115418577A
公开(公告)日:2022-12-02
申请号:CN202211057205.4
申请日:2022-08-30
申请人: 鞍钢集团北京研究院有限公司 , 鞍钢股份有限公司 , 北京科技大学
摘要: 本发明涉及一种耐海水腐蚀的高强高韧阻尼合金及制备方法,化学成分按重量百分比计包括:C:0~0.025%,Mn:15%~27%,Al:1.0%~2.5%,Cr:0~1.8%,1.0%≤Al+Cr≤3.0%,Si≤0.15%,P≤0.005%,S≤0.002%,其余为铁和不可避免的微量的化学元素。优点是:通过热处理调控组织中奥氏体、ε马氏体和α'马氏体相在组织的比例,利用奥氏体、ε马氏体保持合金具有良好的阻尼性能。获得的耐海水腐蚀的高强高韧阻尼合金屈服强度≥345MPa,抗拉强度≥700MPa,断后延伸率≥40%,耐海水腐蚀能力与CortenA钢相当。
-
公开(公告)号:CN115323274A
公开(公告)日:2022-11-11
申请号:CN202211057188.4
申请日:2022-08-30
申请人: 鞍钢集团北京研究院有限公司 , 鞍钢股份有限公司 , 北京科技大学
IPC分类号: C22C38/02 , C22C38/04 , C22C38/14 , C22C38/12 , C22C33/04 , C21D6/00 , C21D6/02 , B21B37/74 , G10K11/162
摘要: 本发明涉及一种提高高强高韧Fe‑Mn阻尼合金阻尼性能的方法,在Fe‑Mn阻尼合金的冶炼过程中,加入一定量的Ti、Nb元素,Nb、Ti添加按质量百分比计满足:4C(wt%)+0.02%≤Ti+1/2Nb(wt%)≤5.21C(wt%)+0.013%。优点是:利用Ti和Nb与Fe‑Mn阻尼合金中的碳元素形成碳化物析出,降低碳元素在阻尼合金中的固溶量,Fe‑Mn阻尼合金晶体结构中间隙原子的溶度下降,柯氏气团溶度下降,位错运动的阻碍降低,不全位错的可逆运动的阻力减小,因此Fe‑Mn阻尼合金的阻尼性能得到显著的提升。
-
公开(公告)号:CN115404412B
公开(公告)日:2023-08-04
申请号:CN202211048096.X
申请日:2022-08-30
申请人: 鞍钢集团北京研究院有限公司 , 鞍钢股份有限公司 , 北京科技大学
摘要: 本发明涉及一种含Mo高强高韧耐蚀铁锰阻尼合金及制备方法,按重量百分比包括以下化学成分:C:0~0.05%,Mn:13%~27%,Mo:0.2%~1.2%,Als:0.015%~0.03%,Si≤0.1%,P≤0.015%,S≤0.012%,其余为Fe及不可避免的杂质;所述的铁锰阻尼合金的微观组织为ε马氏体、奥氏体、α'马氏体组织,其中,α'马氏体含量≤30%,ε马氏体含量≥60%。优点是:通过合金元素的添加及热加工工艺,使铁锰阻尼合金兼具高强、高韧、高阻尼以及良好耐蚀性能。工艺简单且实施便捷,可广泛应用于实际生产中。
-
公开(公告)号:CN115323280B
公开(公告)日:2023-07-04
申请号:CN202211060644.0
申请日:2022-08-30
申请人: 鞍钢集团北京研究院有限公司 , 鞍钢股份有限公司 , 北京科技大学
摘要: 本发明涉及一种耐工业大气腐蚀的高强高韧高阻尼合金及制备方法,所述的阻尼合金的化学成分按重量百分比计为:C:0~0.035%,Mn:15%~28%,0.3%≤Cu≤3.0%,0.2%≤Ni≤1.5%,0.6≤Cu+Ni≤4.5%,Cu/Ni≥0.5,Si≤0.2%,Als:0.015%~0.035%,P≤0.005%,S≤0.002%,其余为铁和不可避免的微量的化学元素;所述的阻尼合金的微观组织为ε马氏体、奥氏体及少量α'马氏体的复相组织。通过添加Cu、Ni耐蚀性元素,提高合金在工业大气环境下的耐蚀性能,同时控制Cu、Ni元素添加的比例,防止出现热脆,影响合金的塑性和韧性。
-
公开(公告)号:CN115323280A
公开(公告)日:2022-11-11
申请号:CN202211060644.0
申请日:2022-08-30
申请人: 鞍钢集团北京研究院有限公司 , 鞍钢股份有限公司 , 北京科技大学
摘要: 本发明涉及一种耐工业大气腐蚀的高强高韧高阻尼合金及制备方法,所述的阻尼合金的化学成分按重量百分比计为:C:0~0.035%,Mn:15%~28%,0.3%≤Cu≤3.0%,0.2%≤Ni≤1.5%,0.6≤Cu+Ni≤4.5%,Cu/Ni≥0.5,Si≤0.2%,Als:0.015%~0.035%,P≤0.005%,S≤0.002%,其余为铁和不可避免的微量的化学元素;所述的阻尼合金的微观组织为ε马氏体、奥氏体及少量α'马氏体的复相组织。通过添加Cu、Ni耐蚀性元素,提高合金在工业大气环境下的耐蚀性能,同时控制Cu、Ni元素添加的比例,防止出现热脆,影响合金的塑性和韧性。
-
公开(公告)号:CN115418577B
公开(公告)日:2023-07-04
申请号:CN202211057205.4
申请日:2022-08-30
申请人: 鞍钢集团北京研究院有限公司 , 鞍钢股份有限公司 , 北京科技大学
摘要: 本发明涉及一种耐海水腐蚀的高强高韧阻尼合金及制备方法,化学成分按重量百分比计包括:C:0~0.025%,Mn:15%~27%,Al:1.0%~2.5%,Cr:0~1.8%,1.0%≤Al+Cr≤3.0%,Si≤0.15%,P≤0.005%,S≤0.002%,其余为铁和不可避免的微量的化学元素。优点是:通过热处理调控组织中奥氏体、ε马氏体和α'马氏体相在组织的比例,利用奥氏体、ε马氏体保持合金具有良好的阻尼性能。获得的耐海水腐蚀的高强高韧阻尼合金屈服强度≥345MPa,抗拉强度≥700MPa,断后延伸率≥40%,耐海水腐蚀能力与CortenA钢相当。
-
公开(公告)号:CN115323274B
公开(公告)日:2023-07-04
申请号:CN202211057188.4
申请日:2022-08-30
申请人: 鞍钢集团北京研究院有限公司 , 鞍钢股份有限公司 , 北京科技大学
IPC分类号: C22C38/02 , C22C38/04 , C22C38/14 , C22C38/12 , C22C33/04 , C21D6/00 , C21D6/02 , B21B37/74 , G10K11/162
摘要: 本发明涉及一种提高高强高韧Fe‑Mn阻尼合金阻尼性能的方法,在Fe‑Mn阻尼合金的冶炼过程中,加入一定量的Ti、Nb元素,Nb、Ti添加按质量百分比计满足:4C(wt%)+0.02%≤Ti+1/2Nb(wt%)≤5.21C(wt%)+0.013%。优点是:利用Ti和Nb与Fe‑Mn阻尼合金中的碳元素形成碳化物析出,降低碳元素在阻尼合金中的固溶量,Fe‑Mn阻尼合金晶体结构中间隙原子的溶度下降,柯氏气团溶度下降,位错运动的阻碍降低,不全位错的可逆运动的阻力减小,因此Fe‑Mn阻尼合金的阻尼性能得到显著的提升。
-
公开(公告)号:CN115404412A
公开(公告)日:2022-11-29
申请号:CN202211048096.X
申请日:2022-08-30
申请人: 鞍钢集团北京研究院有限公司 , 鞍钢股份有限公司 , 北京科技大学
摘要: 本发明涉及一种含Mo高强高韧耐蚀铁锰阻尼合金及制备方法,按重量百分比包括以下化学成分:C:0~0.05%,Mn:13%~27%,Mo:0.2%~1.2%,Als:0.015%~0.03%,Si≤0.1%,P≤0.015%,S≤0.012%,其余为Fe及不可避免的杂质;所述的铁锰阻尼合金的微观组织为ε马氏体、奥氏体、α'马氏体组织,其中,α'马氏体含量≤30%,ε马氏体含量≥60%。优点是:通过合金元素的添加及热加工工艺,使铁锰阻尼合金兼具高强、高韧、高阻尼以及良好耐蚀性能。工艺简单且实施便捷,可广泛应用于实际生产中。
-
公开(公告)号:CN118180341A
公开(公告)日:2024-06-14
申请号:CN202410300526.5
申请日:2024-03-15
申请人: 鞍钢集团北京研究院有限公司 , 鞍钢股份有限公司
摘要: 本发明公开了一种超薄高硅钢薄带的短流程制备方法。包括以下步骤:冶炼→双辊薄带连铸→温轧→去应力退火→酸洗→冷轧→再结晶退火。本发明方法对环境绿色友好,通过双辊薄带连铸机进行连铸,极快的冷却速度能够有效地抑制高硅钢在凝固过程中有序相的转变进程,降低高硅钢铸带中有序相的含量,进而降低有序度,提升其加工性能。其次,该方法能够省去传统轧制工艺中的大压下量热轧工艺,避免了轧制过程中压下量过大而导致的高硅钢板材开裂现象。采用该方法能够在不切边的情况下制备出综合磁性能良好的超薄高硅钢薄带。
-
公开(公告)号:CN116377178A
公开(公告)日:2023-07-04
申请号:CN202310253981.X
申请日:2023-03-16
申请人: 鞍钢集团北京研究院有限公司 , 鞍钢股份有限公司
IPC分类号: C21D1/18 , C21D1/46 , C21D6/00 , C22C38/02 , C22C38/04 , C22C38/38 , C22C38/26 , C22C38/24 , C22C38/28 , C22C38/32
摘要: 本发明涉及一种超高强热成形钢淬火实验模拟热成形工艺,包括1)将试样加热至900~1000℃,保温3~10min;2)将试样从加热炉中取出,5s内转移至盐浴炉中,设置盐浴炉温度为150~170℃;3)从试样进入盐浴开始计时,在盐浴中停留30~60s;4)将试样从盐浴中取出并快速移入温度为20~40℃的水中,让试样完全冷却后取出,淬火完成。本发明避免了常规平板模具淬火实验带来的软点问题,以及水淬产生的韧性降低问题,保证了淬火后钢板试样的有效力学性能,保证了后续拉伸试验的准确性,同时节约了实验成本,并为实际生产提供了有效的热处理工艺思路。
-
-
-
-
-
-
-
-
-