-
公开(公告)号:CN119670222B
公开(公告)日:2025-04-15
申请号:CN202510168327.8
申请日:2025-02-17
Applicant: 西南交通大学
IPC: G06F30/13 , E01D19/12 , G06F30/23 , G06F17/11 , G06F17/16 , G06F111/10 , G06F119/14
Abstract: 本发明提供了一种基于行车性能的铁路桥梁线‑桥一体化设计方法及系统,涉及铁路桥梁轨道平顺性控制技术领域,包括:获取第一信息和第二信息;根据第二信息构建得到车‑线‑桥耦合振动数学模型;根据第一信息和车‑线‑桥耦合振动数学模型进行仿真处理得到管理截止波长;获取桥梁线形在预设荷载工况下的变形数据,得到分波段轨道线形数据;获取区间线路轨道平顺性设计指标;根据线‑桥一体化设计指标体系和分波段轨道线形数据,得到波段间加速度相关性公式;基于波段间加速度相关性公式得到设计限值。本发明通过将铁路桥梁桥上线路与区间线路的轨道平顺性管理相统一,解决了现有技术中桥上轨道线形与区间线路线形管理标准不协调的问题。
-
公开(公告)号:CN119442932B
公开(公告)日:2025-04-04
申请号:CN202510046033.8
申请日:2025-01-13
Applicant: 西南交通大学
IPC: G06F30/27 , G06N3/006 , G06N3/084 , G06N20/10 , G06F119/14 , G06F111/06
Abstract: 本发明提供了铁路小半径曲线非对称钢轨廓形鲁棒性优化设计方法,涉及钢轨廓形优化技术领域,包括获取多组随机样本;根据随机样本构建车辆‑轨道系统的耦合动力学仿真模型输出关键指标,关键指标包括轮轨力、脱轨系数、轮重减载率和钢轨磨耗量;根据关键指标和预设的磨耗模型计算得到不同随机变量组合下的钢轨累积磨耗深度数据;根据随机样本、关键指标和钢轨累积磨耗深度数据构建得到动态响应预测模型;将随机样本作为动态响应预测模型的输入值得到概率密度分布结果,并进行敏感性分析得到敏感变量;根据敏感变量和预设的设计变量生成帕累托前沿解,并拟合得到钢轨廓形优化设计方案。本发明实现了钢轨廓形优化解适应复杂、随机的运营环境。
-
公开(公告)号:CN119622445A
公开(公告)日:2025-03-14
申请号:CN202411552621.0
申请日:2024-11-01
Applicant: 西南交通大学 , 中铁高新工业股份有限公司 , 中国铁路青藏集团有限公司
IPC: G06F18/241 , G06F18/25 , G06F18/10 , G06N3/0464 , G06N3/0442 , G06N3/0499 , G06N3/082 , G01N21/88 , G01N21/01 , G01N21/95 , G01N29/04 , G01N29/22 , G01N29/265
Abstract: 本发明提供了一种基于融合时频域特征的转辙器尖轨裂纹检测方法及装置,涉及尖轨裂纹检测技术领域,包括获取转辙器尖轨不同敲击点的振动信号,所述振动信号包括力信号和加速度信号;对所述振动信号进行同步压缩小波变换,得到同步压缩小波变换结果;计算所述振动信号的频响函数;构建多模态振动信号融合模型;基于所述加速度信号、所述频响函数和所述同步压缩小波变换结果,训练所述多模态振动信号融合模型,得到裂纹伤损识别模型;通过所述裂纹伤损识别模型对实际转辙器尖轨裂纹进行检测,得到实际转辙器尖轨的伤损结果。本发明解决了现有检测方法存在灵敏度低、测量成本高以及不能实现长时间实时检测的问题。
-
公开(公告)号:CN119128503A
公开(公告)日:2024-12-13
申请号:CN202411606557.X
申请日:2024-11-12
Applicant: 西南交通大学
IPC: G06F18/2131 , G06F17/14 , G06F17/18
Abstract: 本发明提供了一种基于稀疏梳状点阵的波包分离方法、装置及设备,涉及波包分离技术领域,包括基于多个信号接收点位获取导波的时域信号;通过所述时域信号计算频散信息;计算传感器的最优接收点位间距;通过所述最优接收点位间距设置传感器点位,得到传感器稀疏梳状接收点阵;基于所述频散信息,构造频率响应矩阵,基于所述传感器稀疏梳状接收点阵,计算频率响应向量,基于所述频率响应矩阵和所述频率响应向量,计算导波传播中的总模态频率幅值系数;基于所述总模态频率幅值系数,通过反傅里叶变换得到各个模态在不同传感器点位下的时域响应,完成波包分离。本发明解决了传统方法无法满足现场波导结构无损监测的实用性和精确性需求的问题。
-
公开(公告)号:CN118862657A
公开(公告)日:2024-10-29
申请号:CN202410886810.5
申请日:2024-07-03
Applicant: 西南交通大学
IPC: G06F30/27 , G06F30/23 , G06F30/17 , G06F111/06 , G06F111/04 , G06F119/14
Abstract: 本申请提供了一种抑制轨道波磨的方法、装置、电子设备及计算机存储介质,该方法包括:将初始扣件非线性刚度参数输入参数优化算法,以输出的优化参数;参数优化算法根据目标轨道的运营条件和扣件系统非线性刚度参数建立;根据优化参数,确定目标轨道对应的目标扣件系统;参数优化算法的约束条件包括:目标轨道的运营指标和目标轨道的波动磨耗深度指标;将目标扣件系统作为目标轨道上需要安装的扣件。本申请通过在进行参数优化时将目标轨道的运营效果和波动磨耗深度指标确定约束条件,得到满足目标轨道运营需要和抑制目标轨道波磨的最优的优化参数,在降低轨道波磨出现的概率的同时,降低既有线轨道波磨治理成本。
-
公开(公告)号:CN118577471B
公开(公告)日:2024-10-29
申请号:CN202411068383.6
申请日:2024-08-06
Applicant: 西南交通大学
IPC: B06B1/06
Abstract: 本发明提供了一种在钢轨中定向激励声表面波的压电换能器及使用方法,涉及超声无损检测技术领域,包括第一压电单元,第一压电单元为长宽高分别为l×w×h的长方体,极化方向沿宽度w方向,电极为平行于极化方向的两个相对的表面l×h,在w×h面内产生剪切变形;第二压电单元,第二压电单元为长宽高为a×b×c的长方体,极化方向沿高度c方向,电极为垂直于极化方向的两个相对的表面a×b,在a×b面内产生横向伸缩变形。本发明通过厚度剪切型压电单元和横向伸缩型压电单元,构建出单指向型的声表面波换能器,能够设置在钢轨的轨腰和轨底上实时监测钢轨完整性,为构建基于声表面波的钢轨健康监测系统提供器件支撑。
-
公开(公告)号:CN118797787A
公开(公告)日:2024-10-18
申请号:CN202411272172.4
申请日:2024-09-11
Applicant: 西南交通大学
IPC: G06F30/13 , G06F30/23 , G06F119/14
Abstract: 本发明涉及轨道交通技术领域,提供一种计算大跨度高铁桥梁车-轨-桥耦合动力响应的模拟方法,其包括以下步骤:步骤1、建立大跨度桥梁有限元模型;步骤2、获取大跨度桥梁主梁节点里程及移动荷载作用下轨枕对应处节点动位移;步骤3:获取大跨度桥梁轨枕对应处节点动刚度;步骤4:建立车-轨耦合动力学模型;步骤5:大跨度桥梁等效动刚度以弹簧元件耦合至轨道子系统下部;步骤6:进行耦合桥梁等效刚度的大跨度桥上车轨‑桥动力学仿真。本发明在开展高铁大跨桥上车轨桥动力学研究时,充分考虑轨道结构,以桥梁等效刚度替代规模庞大的大跨桥梁有限元模型,能快速高效地完成高铁大跨桥上车‑轨‑桥耦合动力学仿真。
-
公开(公告)号:CN118577471A
公开(公告)日:2024-09-03
申请号:CN202411068383.6
申请日:2024-08-06
Applicant: 西南交通大学
IPC: B06B1/06
Abstract: 本发明提供了一种在钢轨中定向激励声表面波的压电换能器及使用方法,涉及超声无损检测技术领域,包括第一压电单元,第一压电单元为长宽高分别为l×w×h的长方体,极化方向沿宽度w方向,电极为平行于极化方向的两个相对的表面l×h,在w×h面内产生剪切变形;第二压电单元,第二压电单元为长宽高为a×b×c的长方体,极化方向沿高度c方向,电极为垂直于极化方向的两个相对的表面a×b,在a×b面内产生横向伸缩变形。本发明通过厚度剪切型压电单元和横向伸缩型压电单元,构建出单指向型的声表面波换能器,能够设置在钢轨的轨腰和轨底上实时监测钢轨完整性,为构建基于声表面波的钢轨健康监测系统提供器件支撑。
-
公开(公告)号:CN118378850A
公开(公告)日:2024-07-23
申请号:CN202410804401.6
申请日:2024-06-21
Applicant: 西南交通大学
IPC: G06Q10/0631 , G06Q10/0633 , G06Q50/08 , G06N3/092
Abstract: 本发明涉及一种基于深度强化学习和并行施工的隧道工作面划分方法,属于铁路施工领域,所述方法包括:S1、采集施工信息,设定隧道结构,定义并行施工方式;S2、建立并行施工方式整数线性规划模型的约束条件;S3、抽取潜在划分位置;S4、使用蒙特卡洛方法模拟各工作面隧道施工工期;S5、使用整数线性规划模型计算总工期和施工队调用个数;S6、设定深度强化学习的奖励函数权重;S7、建立深度强化学习智能,求解工作面划分位置;S8、重复S3至S8,求解得到最优值。S9、重复S4和S5,计算各施工队在各施工段的调度方案。本发明寻找施工工作面划分的优化方案,提升施工项目的管理和执行效率,缩短工期,为建设方提供更经济、高效的施工方案。
-
公开(公告)号:CN118313978A
公开(公告)日:2024-07-09
申请号:CN202410158330.7
申请日:2024-02-04
Applicant: 西南交通大学
IPC: G06Q50/26 , G06F18/20 , G06F16/21 , G06Q10/0637
Abstract: 本发明涉及高速铁路技术领域,提供一种板式无砟轨道建设期碳排放数据库构建与计算方法,其包括以下步骤:一、将建设期分为材料生产、材料运输和现场施工三个阶段,明确碳排放边界,建立高速铁路CRTSⅢ型板式无砟轨道在三个阶段的碳排放计算模型;二、通过血统矩阵对计算所需的碳排放因子进行了质量评估和修正,建立碳排放因子数据库;三、应用碳排放计算模型对CRTSⅢ型板式无砟轨道路基、桥梁和隧道三种路段进行碳排放计算和分析。本发明能较佳地进行高速铁路CRTSⅢ型板式无砟轨道建设期的碳排放计算。
-
-
-
-
-
-
-
-
-